
Manual for the ltioco Tool

Lars Luthmann Hendrik Göttmann Malte Lochau

April 12, 2019

Contents

1 About 2

2 Installation 2
2.1 Compiling From Source on Linux . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Installation Requirements . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Checking Out the Git Repository . . . . . . . . . . . . . . . . . . . 3
2.1.3 Compiling and Running the Project Using Gradle . . . . . . . . . 3
2.1.4 Eclipse Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Usage 4
3.1 Choosing Implementation and Specification . . . . . . . . . . . . . . . . . 4
3.2 Analyzing the Zone Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Testing with tioco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3.1 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.2 Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.3 Depth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



1 About

The purpose of this tool is to provide a demonstration of the results obtained in the
paper On Input/Output Conformance Testing of Live Timed Systems. The tool imple-
ments an Input/Output Conformance (ioco) Testing relation for Timed Input/Output
Automata (TIOA) generated with Uppaal. Of course, it is able to read in every TIOA
generated with Uppaal. Thus, the user can select a TIOA as implementation and one
as specification. The tool then automatically generates the corresponding zone graphs
which can be investigated by the user. With the zone graphs as a basis, the conformance
testing is performed.

This tool is developed at the Real-Time Systems Lab of TU Darmstadt.

2 Installation

For installing the tool you have two possibilities. The easier and faster approach
is to download the jar-file from the website1. In this case, you only need Java Runtime
Environment (JRE) at version 1.8 or higher. If you do not already have a JRE installed,
please visit https://java.com and follow the instructions. The other approach is to
compile the tool from the source code. This procedure is explained in detail in the
remainder of this section.

2.1 Compiling From Source on Linux

In this part it is described how to compile the tool from source with the help of the build
system Gradle.

2.1.1 Installation Requirements

Before you are able to compile the source code, you have to install a few required
programs first. These programs can be easily installed by following the instructions on
their corresponding websites.

• Java Development Kit (version 8 or higher)2

• Git (https://git-scm.com/downloads)

• Gradle (https://gradle.org/install)

After the successful installation of the mentioned programs, you can proceed with the
next step.

1http://www.es.tu-darmstadt.de/es/team/lars-luthmann/icst18
2http://www.oracle.com/technetwork/java/javase/downloads/index.html

2

https://java.com
https://git-scm.com/downloads
https://gradle.org/install
http://www.es.tu-darmstadt.de/es/team/lars-luthmann/icst18
http://www.oracle.com/technetwork/java/javase/downloads/index.html


2.1.2 Checking Out the Git Repository

Check out the git repository like explained below.

1. Open a terminal.

2. Navigate to the folder where you want to place the source files.

3. Type in the command
git clone --recursive https://github.com/hendrikgoettmann/bachelorthesis.git your-folder

and press enter. Replace your-folder with a folder name on your system.

The usage of the parameter --recursive is crucial because the given repository contains
submodules which must be initialized.

2.1.3 Compiling and Running the Project Using Gradle

After checking out the repository, you can compile and run the project with Gradle.
Simply open a terminal, navigate to the root directory of the project and execute gradle
run.

1. Open a terminal.

2. Navigate to the root directory of the project. Here you find a file named build.gradle.

3. Type in gradle run and press enter.

Gradle will then resolve all dependencies automatically and run the tool directly after-
wards. If you want to run the supplied unit tests, simply type gradle test into the
terminal.

2.1.4 Eclipse Import

For importing the project into Eclipse please perform the following steps:

1. Open a terminal.

2. Navigate to the root directory of the project. Here you find a file named build.gradle.

3. Execute gradle eclipse and open Eclipse afterwards.

4. Go to File → Import → Existing Projects into Workspace.

5. Choose under Select root directory ”project-root/juppaal” and click Finish.

6. Repeat step 4, choose ”project-root” as root directory this time and click Finish.

It is important that both projects are imported into Eclipse. Otherwise, Eclipse will
produce countless error messages.

3



Figure 1: TIOA Selection

3 Usage

To run this tool, it is required that you have two TIOA created with Uppaal (one
represents the implementation and the other one the specification). If you do not have a
TIOA at hand, you can take one from the provided examples in the automata directory.

3.1 Choosing Implementation and Specification

After starting the tool, the first thing to do is to choose the implementation and the
specification. This is done via the respective load buttons as depicted in Figure 1. After
clicking the button, a dialog will pop up. Here, you can select the XML file of the TIOA.
The chosen file is shown in the text field next to the load button. The actual automaton
is displayed in the window below the text field (not depicted in Figure 1).

3.2 Analyzing the Zone Graph

The next step after loading the TIOA is to switch to the Zone Graph tab where the zone
graphs are displayed. It is possible to inspect the graphs by zooming in and out (mouse
wheel), or by dragging symbolic states around with the mouse. Additionally you can
save a zone graph as image by clicking the right mouse button on the graph.

3.3 Testing with tioco

Besides generating zone graphs from TIOA, the automated testing in terms of ltiocoz
is the second main feature of this tool. For testing an implementation against the
corresponding specification, three modes are available: Manual, Depth-First Search and
Random. They all have in common, that after each action / delay of a trace, the sets of
output actions are compared. If the set of output actions of the implementation is not
a subset of the set of output actions of the specification, an alert will pop up to show
that ltiocoz is not satisfied. The three modes differ in the way in which zone graphs are
traversed. This is explained in the following.

3.3.1 Manual

The manual mode delegates the decision, which traces are tested, to the user. Via
the respective input fields, the user can select the next action / delay which will be
simulated (depicted in Figure 2). Only actions, which are reachable without any delay

4



Figure 2: Manual Mode

from the current state of the specification, can be selected. Delays, however, may be
chosen arbitrarily.

3.3.2 Random

The random mode generates random traces from the specification. At each step it
determines which delays and actions are allowed. From all possible alternatives one is
chosen arbitrarily. This action / delay is displayed on the button labeled with Next step.
By clicking the button the respective action / delay is executed.

3.3.3 Depth-First Search

The depth-first search mode generates traces until all edges of the zone graph of the
specification are visited at least once. The traces are chosen in a deterministic manner,
such that the algorithm will always produce the same traces for the same specification.

5


	About
	Installation
	Compiling From Source on Linux
	Installation Requirements
	Checking Out the Git Repository
	Compiling and Running the Project Using Gradle
	Eclipse Import


	Usage
	Choosing Implementation and Specification
	Analyzing the Zone Graph
	Testing with tioco
	Manual
	Random
	Depth-First Search



