
Supervisor: Prof. Dr. rer. nat. A. Schürr
Advisor: Lars Fritsche, M.Sc.

ES-M-0131

Rule-based Simulation of
biochemical Reaction
Processes
Regelbasierte Simulation von biochemischen Reaktionsprozessen
Master Thesis submitted by
Sebastian Ehmes
November 5, 2018

Real-Time Systems Lab

Department of Electrical Engineering
and Information Technology (FB18)

Adjunct Member Department of
Computer Science (FB20)

Prof. Dr. rer. nat. A. Schürr
Merckstraße 25
64283 Darmstadt

www.es.tu-darmstadt.de

Declaration of Authorship for the
Master Thesis

I warrant that the Master Thesis presented here is my original work, and
that I did not receive any external assistance. All references and other
sources I used have been appropriately acknowledged. I further declare that
the work has not been submitted for the purpose of academic examination
anywhere else, either in its original or similar form.

I hereby grant the Real-Time Systems Lab the right to publish, reproduce,
and distribute my work.

Darmstadt, November 5, 2018

(S. Ehmes)

Abstract

This masters thesis presents a framework for performing rule-based stochastic simulations
of biochemical processes, using existing general-purpose incremental pattern matching
tools, such as Viatra and Democles. Domain-specific tools for rule-based simulations are
usually highly optimized but lack expressiveness. General-purpose tools, on the other
hand, lack in performance but have the advantage of higher expressiveness. The newly
developed hybrid pattern matching approach, presented in this thesis, aims to mitigate
performance issues of these general-purpose tools, while retaining their advantages. The
performance of the framework is evaluated, with regard to speed and memory require-
ments, using both pattern matching tools and the new hybrid approach. Furthermore, the
framework’s performance is compared to that of the domain-specific tool KaSim, using the
EGF signal pathway model, since it is a popular and well-known example in biochemistry.

Contents

1 Introduction 1
1.1 Goals of the Thesis . 1
1.2 Thesis Structure . 2

2 Theoretical Background 5
2.1 Biochemical Reactions . 5

2.1.1 EGF Signal Pathway . 6
2.2 Rule-based Modeling in Biochemistry . 8

2.2.1 Stochastic Simulation . 9
2.2.2 Kappa . 12

2.3 Model-Driven Software Engineering . 15
2.3.1 Modeling and Metamodeling . 17
2.3.2 Model Transformations . 19
2.3.3 Pattern Matching . 22

3 Implementation 27
3.1 Overview . 27
3.2 Reaction Rules DSL . 28
3.3 Simulation . 33

3.3.1 Reaction Container Model . 33
3.3.2 Simulation Setup . 34
3.3.3 Simulation Execution . 35

3.4 Pattern Matching . 38
3.4.1 Viatra Patterns . 38
3.4.2 Democles Patterns . 41
3.4.3 Disjunct Sub-Patterns . 44
3.4.4 Hybrid Pattern Matching . 45

4 Results and Evaluation 51
4.1 Simulation Results . 51

4.1.1 Simulation of the Goldbeter–Koshland Loop 51
4.1.2 Simulation of EGF Signal Pathway . 53

4.2 Evaluation of Hybrid Pattern Matching . 54
4.2.1 Effects of Model Size variation . 55
4.2.2 Effects of Pattern Size variation . 57

4.3 Runtime comparison with KaSim . 60

5 Related Works 63
5.1 BioNetGen . 63
5.2 RuleMonkey . 64
5.3 CellDesigner . 64

i

5.4 KaSim . 65

6 Conclusion 67

A First Appendix - Model of the Goldbeter–Koshland Loop 75

B Second Appendix - Model of the EGF Signal Pathway 75

ii

List of Figures

2.1 EGF Signal Pathway (1) . 6
2.2 EGF Signal Pathway (2) . 7
2.3 Kappa – Atomic Rules . 13
2.4 Taxonomy of MD* Paradigms . 15
2.5 MDSE Methodology [BCW12] . 16
2.6 Metamodeling . 18
2.7 Types of Model Transformations [BCW12] 19
2.8 Graph Transformation . 21
2.9 Rete-Networks (1) . 23
2.10 Rete-Networks (2) . 24
3.1 Simulation Framework Overview . 27
3.2 Reaction Container Model . 34
3.3 Simulation Modules . 34
3.4 Simulation Loop . 35
3.5 Viatra DSL Translation . 39
3.6 Pattern Translation – Example Pattern . 39
3.7 Democles Pattern Translation . 42
3.8 Disjunct Sub-Patterns – Example Pattern 44
3.9 Hybrid Pattern Translation . 45
3.10 Hybrid Approach – Disjunct Pattern (1) . 46
3.11 Hybrid Approach – Disjunct Pattern (2) . 47
3.12 Hybrid Approach – Injectivity Constraints (1) 48
3.13 Hybrid Approach – Injectivity Constraints (2) 49
4.1 Simulation Results – Goldbeter–Koshland Loop (Thesis Framework) . . . 52
4.2 Simulation Results – Goldbeter–Koshland Loop (KaSim) [DFF+07] 52
4.3 Simulation Results – EGF (Thesis Framework) 53
4.4 Simulation Results – EGF (KaSim) . 54
4.5 Variation of Model Size – Runtime Measurements 56
4.6 Variation of Model Size – Total Runtime . 56
4.7 Variation of Model Size – Memory Usage . 57
4.8 Variation of Pattern Size – Runtime Measurements 58
4.9 Variation of Pattern Size – Total Runtime 59
4.10 Variation of Pattern Size – Memory Usage 60
4.11 EGF Runtime Measurements . 61
5.1 CellDesigner – SBGN and SBML [FMJ+08] 65

iii

1 Introduction

As of today, many biochemical processes in biological lifeforms are still not completely
understood on a molecular level. Most often these processes, such as signal pathways,
play a major role in regulating cellular activity, among other things. Diseases like cancer
or autoimmune disorders, are examples, where some regulatory aspect in human cells
fails to work as intended. In these cases, it is imperative to have a good understanding of
the underlying biochemical processes in order to find a treatment. For this purpose, said
processes are often simulated, to either study certain aspects more closely or to test the
effects of potential treatments.
Over the course of decades many different simulation approaches have been developed in
order to further the understanding of biochemical processes. The most prominent among
them is the simulation of molecular reactions through the use of systems of ordinary
differential equations. This approach requires a deep domain-specific knowledge in or-
der to model processes, by formulating said equation systems. Rule-based simulation,
on the other hand, represents a different and more recent approach, where reactions and
molecules are described on a higher level of abstraction, which makes it more accessible.
Additionally, it requires less effort to model complex processes, such as the initially men-
tioned signal pathways.
Tools employed in rule-based simulations of biochemical processes are either highly spe-
cialized or developed completely independent from certain application domains. Those
representing the former category, like Kappa [DFFK07] and its proprietary simulation
tool KaSim1, provide highly efficient and fast simulations for biochemicals processes.
However, they grant little to no support for additional calculations of more complex rule
preconditions. Tools representing the latter category, like Democles2 [VD13] or Viatra3

[VBH+16], are more expressive, which makes it possible to add additional features, such
as abstract constraints for rule applications. On the other hand, they are not optimized
for specific application domains.

1.1 Goals of the Thesis

The goal of this thesis is to implement a framework for performing rule-based simula-
tions of biochemicals processes. Furthermore, the pattern detection required for such a
rule-based approach, will be performed by general-purpose pattern matching tools. As
opposed to most existing simulation frameworks, which often employ custom tailored and
often less expressive solutions for this purpose. Since the process of pattern detection
is often the most runtime expensive part of an application, the employed approach to
pattern matching must be chosen carefully.
The framework presented in this thesis, will use incremental pattern matching tools,
since they are well suited to react efficiently, when changes within a large model occur
frequently, as is the case in biochemical simulations. For this purpose, Democles and
Viatra are employed and systematically evaluated. Both tools will be used to investigate
1 Kappa/KaSim project page: https://kappalanguage.org
2 Democles Git-Repository and Documentation: https://github.com/eMoflon/emoflon-ibex-democles
3 Viatra project page: https://www.eclipse.org/viatra/

1

the effects of various parameters, e.g., model size, on runtime and memory requirements.
Additionally, a domain-specific language will be developed, which will provide the means
to model entities, rules and initial conditions for rule-based simulations.
Furthermore, a well-known problem will be examined, which occurs when a pattern con-
sists of disjunct sub-patterns. A class of patterns that appears quite frequently in the
biochemistry problem domain. In such cases, the amount of possible pattern occurrences
may grow exponentially and render the process of pattern matching impossible to exe-
cute in a high-performing fashion. Hence, this thesis aims to develop a new method to
calculate the number of pattern occurrences, by separately evaluating their constituent
non-disjunct sub-patterns and reassemble them on demand.

1.2 Thesis Structure

The following section 2 contains the necessary basics that help to understand details of the
implementation and the given examples. For this reason, subsection 2.1 introduces basic
terms of biochemistry and presents the EGF signal pathway, an example of a biochemical
process (subsection 2.1.1). Subsection 2.2 introduces the basics of rule-based modeling,
within the context of biochemistry, and explains stochastic simulation for biochemical
processes (subsection 2.2.1), the basis of most rule-based simulations. As the last part of
subsection 2.2.2, the Kappa modeling language is presented, which can be used to model
biochemical processes. Subsection 2.3 explains the concept of model-driven software en-
gineering, since this thesis relies on its basic concepts, such as the use and specification of
domain-specific languages (subsection 2.3.1), model transformation through rule applica-
tion (subsection 2.3.2), and pattern matching (subsection 2.3.3).

Section 3 presents the implementation and important components of the simulation
framework developed in this thesis. Subsection 3.1 gives a brief overview of the framework.
Subsection 3.2 presents a new domain-specific language, inspired by Kappa, for modeling
biochemical processes, which was developed for the framework in this thesis. Subsection
3.3 presents the core components of the framework, which implement a rule-based stochas-
tic simulation. Since pattern matching is indispensable for rule application, subsection
3.4 explains how the general-purpose pattern matching tools - Viatra and Democles - were
integrated. Furthermore, hybrid pattern matching, a new approach to tackle performance
problems caused by disjunct patterns in the biochemical context, is presented (subsection
3.4.4).

Section 4 presents and discusses simulation results of two different biochemical process
models (subsection 4.1). Subsequently, in subsection 4.2, simulation runtime measure-
ments, with and without using hybrid pattern matching, are presented. Furthermore,
the performance of the two pattern matching tools is discussed as well as possible gains,
when hybrid pattern matching is activated. In subsection 4.3, runtime measurements of
the so-called EGF signal pathway[CC79], an example of a biochemical process from ac-
tive research, are presented and compared to those of the domain-specific simulation tool
KaSim.

2

Section 5 presents related works that also discussed topics centered around rule-based
modeling and simulation of biochemical processes. Additionally, the KaSim tool will be
presented as well.

At the end, section 6 recapitulates the different achievements of this thesis, briefly dis-
cusses the results of the evaluation section and presents possible future improvements.

3

2 Theoretical Background

The main goal of this thesis is to create a framework for rule-based simulations of bio-
chemical reactions, which can be used to investigate the nature of certain biochemical
processes. In order to help understand the given examples and details of the implementa-
tion, subsection 2.1 will explain terms from the field of biochemistry that appear in this
thesis. Additionally, a running example modeling a signal pathway is given, which will be
used later to evaluate performance and illustrate one of many use cases. Section 2.2 sum-
marizes simulation techniques for biochemical processes, shows the concept of rule-based
modeling in general and explains the mechanics of stochastic simulation. Furthermore,
Kappa is introduced, a modeling language used to model biochemical signal networks.
Section 2.3 will explain the concepts of model-based software engineering and the pur-
pose of domain-specific languages, herein used for modeling. The presented simulation
framework makes use of pattern matching and model transformations. For this reason,
the last two subsections are dedicated to these respective topics.

2.1 Biochemical Reactions

Humans, animals, insects, etc. are composed of an incomprehensible amount of cells,
which represent the basic structural and functional building blocks of all complex liv-
ing organisms. A typical animal cell contains cytoplasm enclosed within a membrane
that separates the cells interior from its surroundings. Cytoplasm is comprised of the
organelles, i.e., the internal substructures of the cell, the nucleus and cytosol, which is a
gel-like transparent substance.
Biomolecules such as proteins, carbohydrates, lipids and nucleic acids are the most preva-
lent components in cytoplasm. They are the main building blocks for the organelles as
well as the nucleus, and represent the actors for all biochemical processes that occur in-
and outside of a cell. The main goal of biochemistry is to study and understand the
biochemical processes, i.e., the interaction between the previously mentioned actors, that
occur in living organisms. Such a process describes the transformation of a chemical
compound into a different chemical compound. For example, a protein could connect to
another protein and form a larger molecule with different properties.
Receptors on the cell membrane enable cells to react to external stimuli and to communi-
cate with each other. Molecules, such as hormones, neurotransmitters or growth factors,
coming from outside the cell may activate these receptors for signaling. Once activated, a
cascade of biochemical reactions is triggered, which in turn activates certain mechanisms
inside the cell. These cascades are called signal pathways and play a major role in con-
trolling cell growth, activity, division and death. Therefore, it makes sense to simulate
these pathways to gain a deeper insight into their inner workings.

An example of one of the above mentioned molecules that can activate a receptor on the
cell membrane is the Epidermal Growth Factor (EGF). Stimulating the EGF-Receptor
(EGFR) triggers the EGF signal pathway, which plays an important role in regulating
events in mammalian cells, such as their growth and differentiation, i.e., determination
of the cells type [CC79]. Since this pathway is central to cell regulation, it has long

5

been subject to research concerning cancer and the treatment thereof. Mutated versions
of the EGF-Receptor have been found in a plethora of cancer cell types. For example,
lung cancer cells [LBS+04], brain tumors [LNR+85], breast cancer cells [CHA+18] and
many more. Overexpression of the EGFR caused by mutations has been found to be an
important factor in tumor growth. For this reason, new cancer treatments aim to target
mutated EGFRs with special antibodies [KWB01]. Compared to conventional proven
treatments, like surgery, radiation therapy and chemotherapy, this promising approach is
less invasive. Therefore, it causes less damage to healthy cells.
As a matter of fact, treatments targeting the EGFR are still ongoing research, since the
role of the EGFR signaling network in regulating mammalians cells is still not completely
understood [DFF+07]. For this reason, simulating the EGF pathway is not only an inter-
esting example, but also relevant to ongoing research concerned with the development of
new therapies for cancer treatment. As stated at the beginning, the EGF pathway will
later be used to evaluate the simulation framework presented in this thesis. Therefore,
the next chapter will give an overview of the pathway’s intermediate steps and explain
the necessary details.

2.1.1 EGF Signal Pathway

The EGF signal pathway is a complex series of 211 reactions and 202 proteins [OMFK05],
which in its entirety would be too complicated of an example. Fortunately, Danos et al.
[DFF+07] simplified the pathway model in order to create a feasible simulation. In ad-
dition to that, a preceding bachelor’s thesis, written at the Real-Time Systems Lab, also
researched rule-based simulation of biochemical processes. In the mentioned bachelor’s
thesis the EGF pathway was summarized and used as an example to test the presented
simulation tool. This thesis draws from both sources in order to summarize the EGF
signal pathway in such a manner, that is digestible for readers coming from a scientific
backgrounds other than biochemistry.

E
G
F
R

Cell Membrane

E
G
F

E
G
F
R

E
G
F

E
G
F
R

…
<Activation>

Figure 2.1: EGF Signal Pathway (1)

The process begins when an EGF protein arrives at the cell membrane and binds it-
self to the receptor protein EGFR, as shown in figure 2.1. After that, the EGFR can bind
to a neighboring EGFR that is also bound to an EGF molecule. Both EGFR proteins
are now capable of cross-activating each other, which is illustrated by the double arrow
in figure 2.1. Cross-activation implies, certain parts of the EGFR residing inside the cell

6

become phosphorylated. That means they undergo phosphorylation, the reversible bio-
chemical process of attaching a phosphoryl group to a biomolecule. Parts that underwent
this process are also called phosphorylated residues (red triangles in figure 2.1) and can
serve as binding sites for proteins from within the cytoplasm. Unphosphorylated residues
(gray triangles in figure 2.1), on the other hand, are unable to bind other proteins.

Cell Membrane

Grb2

<Binds>

SoS

<Binds>

<Binds>

Raf

<Binds>

MEK

<Binds>

ERK<Binds>

Nucleus

<Enter & Activate>

Figure 2.2: EGF Signal Pathway (2)

Inside the cell, an EGRF’s phosphorylated residue binds a Grb2 protein, which in turn
binds a SoS protein (see figure 2.2). A Ras protein from inside the cell can now bind the
SoS protein. As a consequence, it can trade it’s low energy GDP for a high energy GTP
molecule, as illustrated in 2.2. In the next step, only a RasGTP protein can bind a Raf
protein. A bound Raf molecule then becomes activated and binds a MEK protein, which
becomes activated as well. After that, an activated MEK protein binds and activates
an ERK protein. Finally, an activated ERK protein enters the nucleus and triggers the
reproduction of genetic material.
A singular successful completion of the EGF pathway will not lead to unlimited repro-
duction of the genetic material inside the nucleus. Instead, there are mechanisms which
regulate this process. For instance, the deactivation of Ras, Raf, MEK and ERK proteins
can interrupt the signal pathway. Additionally, the Ras molecule can bind only one of
the following molecules at a time: RasGTP, SoS or Raf. Only the SoS protein is able to
bind an inactive Ras, the other molecules have to compete for an active Ras. That means,
a RasGTP protein could, for example, bind a RasGTP protein, which in turn prevents it
from binding a Raf protein. As a consequence, the signal pathway is halted until a free
RasGTP protein can bind a Raf protein.

7

2.2 Rule-based Modeling in Biochemistry

As mentioned in the previous subsection, signal pathways play a vital role in regulating
cell activity. For this reason, a malfunctioning pathway is often the culprit or at least
an indicator for cell misbehavior, e.g., uncontrolled growth in case of cancer. Addition-
ally, many biochemical reactions and for that matter signal pathways especially, are very
complex, with respect to the number of involved molecules and the number of subsequent
reactions needed to complete a signal pathway. Furthermore, observing biochemical pro-
cesses in detail and in real-time is either not yet possible or very tedious and consequently
time consuming and expensive. Hence, signal pathways are often not completely under-
stood and subject to active research. For these reasons, computer simulation has become
very common and an effective means to further investigate biochemical processes and, for
example, test new drugs or other therapeutic means, before applying them to a living test
subject.

The basic question all simulations of biochemical reaction processes try to answer is:
Given a number of reaction channels, how does an initial number of molecules, of a cer-
tain type, change over time? To answer this, several assumptions are typically made.
First and foremost, the simulation has to take place in a fixed volume V , which contains
a spatially uniform mixture of the N chemical species, i.e., the involved molecule types.
Furthermore, these molecule types can interact through M specified chemical reactions.
The traditional way of simulating a set of biochemical reactions is to use a system of
Ordinary Differential Equations (ODE). According to Gillespie [Gil77], a set of ODEs is
constructed under the assumption that the number of molecules of the ith species, con-
tained in the given volume V at time t, can be expressed through a function Fi(t), with
i ∈ N. Additionally, each of the M reactions are assumed to be processes with a contin-
uous rate. Given this, a set of coupled first-order differential equations can be constructed:

dF1/d t = g1(F1, ..., FN)
dF2/d t = g2(F1, ..., FN)

...

dFN/d t = gN (F1, ..., FN)

(1)

Functions g1, ..., gN are determined through properties of the M reactions, e.g., their
structure and rate constants. To answer the formerly posed question, one has to solve
the so-called reaction rate equations (equation 1) for functions F1(t), ..., FN (t), given the
above described initial conditions. Solutions to these equations are usually found numer-
ically, through the use of computers, because analytical solutions can only be found for
very simple systems.
Despite the great importance and usefulness of this approach, simulation of biochemi-
cal reactions through chemical kinetics has several issues. This approach assumes the
chemical reaction system to be both continuous and deterministic. Gillespie [Gil77] no-
ticed that this does not reflect real world properties of such processes, which show that
molecular population levels can only change in discrete integer amounts. Additionally,

8

he states that time evolution of a biochemical system is not a deterministic process, for
it is impossible to know the exact positions and velocities of molecules, which are prop-
erties needed to precisely predict exact molecular population levels. Another problem of
simulations through ODEs is the combinatorial nature of signaling pathways. Davos et
al. [DFF+07] states that this property leads to an exponential increase in the amount of
equations required to model such chemical reactions networks. Within the context of bio-
chemistry, most of the molecular species are proteins that posses multiple sites at which
they can be modified, e.g., through phosphorylation. Each site increases the number of
states a molecule may have exponentially, which means that 5 modifiable sites will lead
to 32 states. The description of a complex consisting of two molecules, with 32 states
each, would require 1024 equations. The reason for this, is the fact that every molecu-
lar species has its own concentration variable and equation describing its rate of change,
which must be known beforehand in order to formulate the ODEs. As a consequence,
complex biochemical reaction processes, like signal pathways, can not possibly be formu-
lated as a system of equations and therefore not simulated using this traditional approach.

In combination, these problems have led to the adoption of rule-based modeling, which is
an attempt at describing biochemical reaction processes in a different fashion. In contrast
to the approach of using chemical kinetics and a system of ODEs, rule-based models use
a set of rules to define biochemical systems.

2H2 +O2→ 2H2O (2)

The idea is to formulate these rules using the notation of simple chemical reactions describ-
ing local events, e.g., equation (2) showing oxyhydrogen. Within the context of rule-based
models, molecules are described as agents, whose possible interactions are defined by rules
that specify how a local pattern of sites and their states is to be rewritten [DFF+07]. The
difference between classic chemical reactions and rule applications in rule-based modeling
is that post-translational modifications are not seen as chemical transformations, but as
state changes of the involved agents. That means, a protein, despite having been phospho-
rylated, is still seen as the same entity, but in a different state. Furthermore, in rules only
the participating agents and some of their respective sites, i.e., those that are of impor-
tance to this rule, are mentioned and not all agents and sites a molecule may have. This
essentially avoids the scalability problem that the ODE-based chemical kinetics modeling
approaches have. Instead of exhaustively enumerating reactions between fully-specified
molecule types, rules only explicitly state those aspects of their involved agents that are
actually relevant to the interactions described by the rules.
Rule-based modeling has been successfully implemented in several software tools such
as BioNetGen (see 5.1), RuleMonkey (see 5.2) and Kappa. The latter will be used to
illustrate rule-based modeling further and is discussed in subsection 2.2.2.

2.2.1 Stochastic Simulation

Gillespie’s algorithm [Gil77] describes the stochastic simulation of coupled chemical reac-
tions. Most approaches that implement rule-based simulations of biochemical processes

9

are based on the principle of Gillespie’s work, as is the case with the framework presented
in this thesis. Therefore, its basics, assumptions and procedure will be discussed in this
subsection.
Opposed to the previously mentioned ODE-based approach, this algorithm does not as-
sume the chemically reacting system to be continuous and deterministic, since Gillespie
argues that this does not reflect reality very well. For example, he states that reaction-
rate equations lack the ability to describe fluctuations in molecular population levels. For
this and other reasons [Gil77], a new algorithm was developed that takes explicit account
of the fact that time evolution in spatially homogeneous chemical systems is a discrete
stochastic process. Therefore, Gillespie named his new computational method stochastic
simulation algorithm.

The basic assumption is that the system is in thermal equilibrium. Hence, molecules
will at all times be distributed randomly and uniformly throughout the containing vol-
ume V . Gillespie shows that we are not able to calculate the number of all reactions
occurring in V . Instead, we can calculate the probability of a reaction occurring in V in
any infinitesimal interval. For this reason, it is more appropriate to describe a system of
molecules in thermal equilibrium through a reaction probability per unit in time, instead
of a reaction rate. Hence, these reactions describe a stochastic Markov process. An im-
portant component of this concept is the stochastic reaction constant cµ, which represents
the average probability that a particular set of molecules will react. Generally speaking,
the assumption is that each reaction Rµ has its own constant cµ, with µ ∈ [1, M]. Ad-
ditionally, Fi molecules of molecule types X i(i ∈ [1, N]) exist in a spatially homogeneous
mixture inside a volume V . Lastly, these N molecule types can react through the M
reaction channels.

R1 : X1 + X2 −→ X3 (3)

For example, the reaction in equation 3 defines two different molecules, which react and
form a third kind of molecule. Its reaction probability can be described as follows:

PR1
= F1F2c1d t (4)

PR1
in equation 4 describes the probability of a reaction R1 occurring somewhere in V,

within the next infinitesimal time step d t. This probability PR1
depends on the physical

properties of the involved molecules and the temperature of the system, described by
c1d t, which is the average probability of the molecules reacting in the next time step d t.
On the other hand, PR1

depends on the number of distinct molecule combinations F1F2,
which can be found in V , with F1 and F2 each representing population numbers of species
X1 and X2.
The calculation of the stochastic time evolution of a spatially homogeneous mixture,
containing N molecular species reacting in M reaction channels, is based on the reaction
probability density function P(τ,µ).

P(τ,µ) =

�
aµe(−a0τ) i f : 0≤ τ <∞ and µ ∈ [1, ..., M]

0 otherwise
(5)

10

Given a system at time t that is in the state (F1, ..., FN), function P(τ,µ)d t expresses
the probability for the next occurring reaction in V , happening in the time interval
[t +τ, t +τ+ dτ] and being a Rµ reaction. In short, it tells us when the next reac-
tion occurs and what kind of reaction it will be. Equation 5 shows a joint probability
density function, with the continuous variable τ representing the time step and the dis-
crete variable µ denoting the reaction.

aµ = hµcµ , µ ∈ [1, ..., M] (6)

Function aµ expresses the probability of a reaction Rµ occurring in V , given the systems
state (F1, ..., FN) at time t. Function hµ, used in equation 6, represents the current state
of the system. More precisely, it is the number of distinct molecular combinations in Rµ
available in the state at time t. Given the example reaction in equation 3, h1 of R1 would
have the form h1 = F1F2.

a0 =
M∑

v=1

av =
M∑

v=1

hv cv (7)

Equation 5 also shows a function a0, which is the sum over all aµ and expresses the
probability of any reaction occurring in V , given the system’s state. It can also be seen
as the system’s overall activity.
In order to find a random reaction and the corresponding time interval, we need to generate
a random pair (τ,µ), according to the probability density function in equation 5. Gillespie
does that by first finding two uniformly distributed random numbers r1 and r2, lying
within the interval [0, 1].

τ=
�

1
a0

�
ln
�

1
r1

�
(8)

Given r1, a time interval τ can be calculated through equation 8, which generates the
random number τ according to the probability density function P1(τ) = a0e−a0τ.

µ−1∑
v=1

av < r2a0 ≤
µ∑

v=1

av (9)

Given r2, µ representing the index of the selected reaction is determined by satisfying the
constraint in equation (9). This produces a random number according to the probability
density function P2(µ) =

aµ
a0
. Gillespie shows that P1(τ)P2(µ) = P(τ,µ) [Gil77]. There-

fore, a valid pair (τ,µ) is produced, which satisfies the density function in equation 5.

The algorithm devised by Gillespie, which simulates the stochastic time evolution of
a chemical reacting system, is comprised of 4 steps.

• Step 1 - In the first step, all variables are initialized. That means M reaction
constants cµ are set, N initial molecular population numbers Fi are given and the
time variable t is set to zero.

11

• Step 2 - Next, all values for h1, ..., hM are calculated, based on current molecu-
lar population levels. Using h1, ..., hM , values for a1, ..., aM are assigned according
to equation 6. Consequently, a0 is calculated by summing over a1, ..., aM , using
equation 7.

• Step 3 - In this step, two random numbers r1 and r2 are created, which are then
used to calculate τ and µ according to equation 8 and 9.

• Step 4 - Finally, Rµ is selected, using µ from step 3, and time t is increased by τ.
Furthermore, molecular population levels are adjusted to reflect an occurrence of
reaction Rµ. Looking at the example in equation 3, reaction R1 would decrease the
population levels F1 and F2 of X1 and X2 by 1, and increase the population level F3
of X3 by 1.

The algorithm will repeat steps 2 through 4 until some predefined termination criterion
is fulfilled. Gillespie suggests using a maximum time t, a maximum number of reactions
n or a0 reaching 0, as a trigger to halt the simulation.

2.2.2 Kappa

Modeling biochemical reactions and its constituents in order to simulate complex bio-
chemical processes plays a major role in this thesis. Kappa (κ), a widely used modeling
language for biomolecular interactions, served as an inspiration as well as a reference for
the design of a new domain-specific language, presented in subsection 3.2 of this thesis.
Therefore, this subsection will present Kappa’s key features.

Kappa is a domain-specific language used to model proteins and the interactions be-
tween them [DL04]. As stated in subsection 2.2, it is an example of the implementation
of rule-based modeling. Hence, Kappa does not require the user to write down differential
equations to model biochemical processes. Instead, the κ language uses rules to define
interactions among molecules.
The main component of a Kappa model is a collection of agents and rules. An agent repre-
sents a biomolecular species, i.e., a certain type of biomolecule or complex of biomolecules,
that can interreact with other agents. Each agent has a name and a set of sites. The
purpose of sites is to serve as an interface, where agents may be bound to other agents.
Additionally, sites can have a set of possible internal states. Such a state could potentially
be used to describe a phosphorylated or unphosphorylated site of a protein.

Listing 2.1: Agent Declaration
1 %agent : A(x , y) // Dec la ra t i on o f agent A
2 %agent : B(z{p , q}) // Dec la ra t i on o f agent B

The Kappa language makes it fairly comfortable to define agents and sites. The example
in listing 2.1 line 1 demonstrates the definition of an agent with name A, possessing two
sites x and y. In line 2, an additional agent with name B is defined. In this case, the site
z can have one of two different states p and q.
A rule provides a precise description of how agents interact. Such a rule is applied, when

12

a match to its precondition is found. A precondition within the context of Kappa is a
certain combination of agents, sites and links between sites. Rule application means that
the model entities, represented by a match, are modified in such a way, that they satisfy
the rule’s postcondition. Listing 2.2 contains some basic example rules using Kappa
syntax. In the Kappa language links between agents, described in rule preconditions, are
expressed through link states inside brackets, next to sites. Site states are written in
curly brackets. The arrows in listing 2.2, separating pre- and postcondition, indicate the
directionality of a rule. A rule can either be unidirectional -> or bidirectional <->. The
latter essentially means that a rule can be applied backwards, with its postcondition as
precondition and its precondition as postcondition. The @ operator, accompanied by a
number at the end of a rule, denotes the rate constant k. It is the probability that the
rule is applied in the time interval between t and t + d t, given that its precondition is
met. Furthermore, a rule can either be atomic, i.e., it performs only one type of action,
or it can be non-atomic and combine several actions. Danos et al. [DFF+09] defined
5 five classes of atomic rules, which may perform one of the following actions: binding,
unbinding, modification, creation and deletion.

A

y

x

B

z

A

y

x

B

z

Binding

A

y

x

B

z

A

y

x

B

z

Unbinding

B

z

B

z

Modification

Creation

A

y

x

Deletion

A

y

x

p q

Figure 2.3: Kappa – Atomic Rules

The first class of atomic rules binds two agents, as illustrated in figure 2.3 and rule_1 in
listing 2.2 line 1. In this example, rule_1 defines two agents which are not yet bound,
i.e., unbound, as its precondition. Unbound sites of agents are denoted by the dot in
brackets. When the rule is applied, it connects agents A and B at site x and z through a
link, according to the link state with index 1.
The unbinding of two agents is the second class of atomic rules and illustrated in figure

13

2.3 and listing 2.2 line 2. For example, rule_2 defines two bound agents, denoted by the
link with index 1, as its precondition. When the rule is applied, it deletes the link and
therefore disconnects agents A and B, at site x and z.
The third class of atomic rules is the modification of site states. When looking at the
precondition of rule_3, in listing 2.2 line 3, we notice that site z of agent B is in state
p. As opposed to the postcondition of rule_3, where site z is in state q. Consequently,
when the rule is applied the site state is changed from p to q, as illustrated in figure 2.3.
As we can see in figure 2.3, atomic rule class 4 creates and class 5 deletes an agent. In
Kappa, the creation of an agent is expressed by writing a dot, instead of an agent as a
precondition and the to be created agent is defined in the postcondition. Deletion works
the other way round. Instead of creating a new agent through rule application, an agent is
deleted. The to be deleted agent is described in the precondition, while the postcondition
receives a dot (see listing 2.2 lines 4 and 5).

Listing 2.2: Atomic Rules
1 ’ rule_1 ’ A(x [.] , B(z [.]) −> A(x [1] , B(z [1]) @ 1 // Binding
2 ’ rule_2 ’ A(x [1] , B(z [1]) −> A(x [.] , B(z [.]) @ 1 // Unbinding
3 ’ rule_3 ’ B(z{p } [.]) −> B(z{q } [.]) @ 1 // Mod i f i ca t i on
4 ’ rule_4 ’ . −> A(x [.] , y [.]) @ 1 // Creat ion
5 ’ rule_5 ’ A(x [.] , y [.]) −> . @ 1 // De le t i on

As a remark, Kappa defines three additional link states, besides a dot and an index.
Listing 2.3 shows some exemplary rules, with patterns that make use of these link state
types. In the first example, rule_3_1 makes use of the wild card, denoted by #, which
implies that the link state of site p is of no relevance to this precondition. Example
rule_3_2 demonstrates the bound-to-any link state, denoted by _, stating site p must be
bound another site, which one does not matter. Lastly, example rule_3_3 uses the bound-
to-any-of-type link state which refines the previously shown link state and is expressed
through <Site>.<Agent>. This link state requires site p to be bound to another site of
type x, belonging to an agent of the specified type A.

Listing 2.3: Additional Site States
1 ’ rule_3_1 ’ B(z{p } [#]) −> B(z{q } [#]) @ 1 //Wild card
2 ’ rule_3_2 ’ B(z{p } [_]) −> B(z{q } [_]) @ 1 //Bound−To−Any
3 ’ rule_3_3 ’ B(z{p } [x .A]) −> B(z{q } [x .A])@ 1 //Bound−To−Any−Of−Type

For any simulation to be able to run, initial conditions are required. In Kappa, initial
conditions are defined through the init keyword, followed by the agents that should be
instantiated and the number of instances. Listing 2.4 line 1 shows an example instantiation
of 10 instances of agent type A.

Listing 2.4: Initial Condition and Observable
1 %i n i t : 10 A(x [.] , y [.])
2 %obs : ’num_of_B’ |B(z{q } [#]) |

The last feature presented in this subsection are the observables, expressed through the
obs keyword of the Kappa language. Observables are used to get simulation statistics,
such as the number of current instances of a certain agent pattern or type. An observable

14

is defined using the obs keyword, followed by a label name and the agent pattern that
should be observed, i.e., printed out. For example, the observable in listing 2.4 line 2
leads to a printout of the total amount of agent B instances, with their sites z being in
state q.

As a final remark, Kappa has many more features, besides the few named in this subsec-
tion, but these are not essential to this thesis. Most of the other not mentioned features are
for convenience purposes, such as variables, or are extensions to Kappa’s expressiveness,
like arithmetic expressions.

2.3 Model-Driven Software Engineering

Since this thesis aims to simulate biochemical processes in a rule-based fashion, rules,
agents, bonds between agents and the simulation environment itself have to be modeled.
One could go about this in a straight forward approach, for example, modeling the reac-
tion process in an algorithmic fashion and apply it to a population of agents. However,
this approach will be very tedious to maintain, when we start to modify either rules or
agent types, and would have to be partially redone, if we want to simulate a different
process. The approach of Model-Based Software Engineering (MBSE) naturally lends
itself to tackle the problem of re-usability and reconfigurability. MDSE can be defined as
a set of instruments and guidelines for applying the advantages of modeling to software
engineering activities [BCW12]. The core concepts of MDSE are models and transforma-
tions, with the latter meaning to apply manipulation operations of any kind to a model.
MDSE follows the statement “Everything is a model” very closely, which implies that we
do not only have models representing data, but we also think of model transformations as
models themselves. To create models within the context of MDSE a modeling language
is employed (e.g., UML), which in turn can be defined by a model itself. In MDSE this is
called meta-modeling, i.e., modeling a model, which can also be interpreted as modeling
all possible models that can be expressed with a modeling language.

MBE

MDE

MDSE/MDD

MDA

Figure 2.4: Taxonomy of MD* Paradigms

There is a plethora of terms in the model-driven universe, that for the most part mean the
same or represent an umbrella term for different aspects of the model-driven paradigm.
The most commonly used term is Model-Driven Engineering (MDE), which encompasses
more than pure software development activities and includes other model-based tasks of

15

a software engineering process, e.g., model-based evolution of a system [BCW12]. As
shown in figure 2.4, MDE represents a superset to MBSE and Model-Driven Software
Development (MDSD), also called Model-Driven Development (MDD). The latter focuses
on using models as primary tool of the development process and generating the implemen-
tation automatically from models. Model-Driven Architecture (MDA) is a specialization
of MDSE/MDD, created by the Object Management Group (OMG) and provides a stan-
dard for modeling and transformation languages. The OMG standard promotes the use
of modeling architectures, like the Meta-Object Facility (MOF) [Obj05]. Model-Based
Engineering (MBE) lies on the other side of the spectrum, in which software models are
important, but not the driving factor in development. Hence, MBE is a superset to MDE.

Figure 2.5: MDSE Methodology [BCW12]

The main aspects of MDSE are illustrated in figure 2.5, where MDSE approaches prob-
lems in orthogonal dimensions. In the figure conceptualization is represented by columns
and implementation by rows. Implementation tackles the issue of mapping models to
systems and consists of three core aspects:

• On the modeling level models are defined.

• Mappings from modeling to realization levels happen on the automation level.

• Implementation of solutions through artifacts takes place on the realization level.

Conceptualization on the other hand defines conceptual models for describing reality and
consists of three core aspects as well:

• Definition of application models, model transformation and generation of running
components happen on the application level.

• On the application domain level the modeling language is defined as well as trans-
formations and implementation platforms for a specific domain.

• Conceptualization of models and transformations takes place on the meta-level.

16

As shown in figure 2.5, the MDSE work flow starts with a model and through the use
of model transformations finishes with a realization of the given model, e.g., running
code in the case of software development. Models are specified according to a model-
ing language, which itself is defined by a meta-modeling language. Transformations are
described through a set of transformation rules, in turn defined by a transformation lan-
guage. Furthermore, the above described various layers of abstraction make models and
transformations platform independent. That means, models are often described through
some kind of platform independent markup language, e.g., XML. Platform dependent
artifacts are only generated in the final step, i.e., the realization (see figure 2.5). This
allows for models to be reused and systems to run on different platforms.
As one can see, this makes for a very compelling concept for creating reusable, interchange-
able software, which prevents many compatibility issues. Additionally, modeling grants
several perks, for example, syntactical validation, model checking and model simulation
[BCW12].

2.3.1 Modeling and Metamodeling

A model is usually defined by using a modeling language. Such a tool allows the designer
to define a representation of a conceptual model, either through graphical representations,
textual specifications, or both.
We can defines two classes of languages [BCW12]: General-Purpose Modeling Languages
(GPL) and Domain Specific Languages (DSL). Languages of the former kind are model-
ing tools that can be applied to any problem domain for modeling purposes. The UML
language used to describe, e.g., software architectures, is a well known example as well as
state machines, control flow diagrams and many more.
DSLs, on the other hand, are languages that are tailored specifically to suit a certain
domain and are used to describe entities in that specific domain. Latex is an example of
a DSL, which is used for type setting and formatting text. Database languages like SQL,
hardware description languages like Verilog, or MatLab used in mathematics, represent
another three of many examples for widely used DSLs.

As stated in 2.3, models are an integral part of the MDSE paradigm. When we look
at models from the same domain, we notice that they share common traits. For this
reason, it is only natural to see models as instances of more abstract models. These are
called metamodels and represent another layer of abstraction, the same way that models
represent an abstraction of reality. If we continue along this train of thought, even meta-
models themselves can be seen as instances of meta-metamodels. For example, a model
of a tool used to create a DSL, e.g., Xtext, is a meta-metamodel to metamodels defined
by the DSL. This process of metamodeling can be repeated recursively for infinite levels.
In practice, it has been shown that meta-metamodels can be defined based on themselves
[BCW12], which makes it impractical to go beyond this level of abstraction.
The principle of metamodeling is illustrated by figure 2.6, which shows parts of the
metamodel used in the implementation section of this thesis and contains entities like
agents that have been introduced in previous sections. The presented 4-layer architecture
[BCP12] is typical for MOF based projects.

17

Figure 2.6: Metamodeling

• M3: The Meta-Metamodel Layer contains the modeling language used to describe
the structure of the metadata. In this case, a MOF implementation called Eclipse
Modeling Framework (EMF4) provides the meta-metamodel at M3. EClass repre-
sents the most important entity on this level, all entities in M2 are instances of this
base type.

• M2: The Metamodel Layer provides definitions for the in M3 described structures
of meta-data. M2 is where a modeling language, e.g., UML, or a DSL is defined.
In figure 2.6, the metamodel layer specifies Agent, Site, State and Link entities,
which may be used to express relations between Agent instances, through linked
Site instances.

• M1: The Model Layer contains definitions of data and is the layer where modeling
languages, or DSLs operate. They define the properties of models, i.e., the structure
of elements in the M1 layer. In the example, A is an instance of an Agent entity
from M2 and it contains two instances of the Site entity. Agents of type A and B are
linked, because their contained sites share the same Agent entity. Therefore, Link
entities are used to connect agents at their sites.

• M0: The Information Layer contains objects, i.e., instances of M1 entities. They
serve as template for real world objects. Hence, M0 represents the actual data that
we wish to describe.

4 EMF project page: https://www.eclipse.org/modeling/emf/

18

2.3.2 Model Transformations

The previous sections looked at models in a static fashion, where model entities repre-
sented some kind of object or property of the real world. In other words, the models were
static and could not change. Regarding the goal of this thesis, i.e., creating a rule-based
simulation, we need the models to be able to change and entities within models should
be able to interact with each other. For this reason, we need model transformations.
As stated in subsection 2.1, besides models, transformations are equally important and
represent another crucial ingredient to MDSE. The term transformation describes more
than one type of operation that can be performed upon a model. Typical operations
are: Model-to-Model (M2M), Model-to-Text (M2T) or Text-to-Model (T2M) oper-
ations. M2T transformations receive a model as input and generate a text string as
output. T2M transformations, on the other hand, take text as input and generate models
as output.

(a) Exogenous (b) Endogenous

Figure 2.7: Types of Model Transformations [BCW12]

M2M operations can be used to migrate models between different metamodels or to re-
fine models [ELS+10]. These operations are also called exogenous or endogenous model
transformations [MG06], respectively. The former concept is illustrated in figure 2.7(a),
where ModelA from MetamodelA is transformed to ModelB conforming to the specifica-
tions of MetamodelB. A possible scenario, where such a transformation would be useful, is
the translation between two different programming languages. For example, MetamodelA
could be Java and MetamodelB represents C++. The goal would be to transform pro-
gram A, written in Java, to a program B, with the same semantics, but written in C++.
Figure 2.7(b), on the other hand, shows the concept of model refinement, where a ModelA
from MetamodelA is transformed to a model that still conforms to MetamodelA. Looking
at the metamodel example in figure 2.6, we can think of the following possible scenarios
for refinement: Two or more Agent instances have to be linked, created, destroyed or
unlinked, similar to atomic rules in Kappa, shown in subsection 2.2.2. In essence, such
transformations are required whenever changes to a model need to be expressed.
A basic M2M application is a source-to-target, or target-to-source transformation. In
this case, an existing model is used as input, is then modified and finally a new output
model is generated. An incremental model transformation represents a more advanced
M2M use case, which improves upon the former method and only updates the source
or target model, without completely regenerating them. The last scenario is model syn-
chronization, where source and target models can be modified, and consistency is kept
by propagating changes from model to model. For this reason, keeping models consis-

19

tent is an important task but as it turns out, a non-trivial one. For this reason, it is
still subject of ongoing research. As a remark, Triple Graph Grammars (TGG) [Sch95],
which are already in frequent use, solve this problem by defining a correspondence graph
between two metamodels. This correspondence model can be used to synchronize mod-
els and check for consistency as well as allowing model transformations in both directions.

Typical applications in MDSE scenarios frequently employ exogenous M2M transforma-
tions, where models are often manually modified through modeling editors or DSLs, by
editing, creating and or removing entities in the model. Regarding the goal of this thesis,
i.e., rule-based simulation, an exogenous approach does not make sense, because we do
not want to translate between models that conform to different metamodels. Instead,
we want to refine models conforming to some metamodel iteratively, through transforma-
tions. Additionally, these transformations should be performed in-place, because building
the output model from scratch after every transformation step would be impractical, since
there might be many steps. A transformation is in-place, when changes to a model are
applied without copying all the static parts of the model, i.e., the parts that are not
affected by the transformation. For this reason, endogenous in-place transformations are
most suited for simulation purposes in an MDSE context.

Graph transformation [EEPT06] is a common approach to in-place transformations.
It is a declarative, rule-based technique for expressing in-place model transformations,
based on the fact that models and meta-models can be expressed as graphs. Therefore,
they can be manipulated using graph transformation techniques.
Graph transformations have several perks that make them so useful. Their general nature
allows for in-place transformations as well as the formulation of out-place transformations,
by incorporating source and target models into one graph. Furthermore, graph trans-
formations have a visual form, which makes them and the rules they are representing,
intuitive. Finally, their formal nature makes it possible to subject rules to analysis. A set
of graph transformation rules and an initial graph, on which a transformation according
to the rules is performed, is called a graph grammar. Graph transformation rules, hence-
forth, called rules, contain a Left-Hand Side (LHS) and a Right-Hand Side (RHS). The
left-hand side graph represents preconditions which must be met, such that the rule can
be applied (the rule fires). The right-hand side graph, also called postcondition, represents
the outcome of the rule application. Equal identifiers on both sides mark corresponding
elements on LHS and RHS. The application of a rule, whose preconditions have been met,
performs the following modifications [BCW12]:

• All elements, present only on the LHS, are deleted

• Elements that exclusively reside on the RHS are added

• Elements that exist on the RHS and the LHS are preserved

Using just the LHS to specify preconditions only enables us to describe the existence of
certain nodes in a subgraph. That means, we can not prevent the presence of unwanted
nodes. For this reason, Negative Application Conditions (NAC) are introduced, which

20

specify the elements that must be absent from a subgraph, in order to fulfill a precondi-
tion of rule. In short, the LHS specifies elements that must exist in a matching subgraph,
while the NACs describe what must not be attached to a matching subgraph, such that
a rule may be applied to it.
As stated before, in order for a rule to be applicable the preconditions have to be met.
That means, a subgraph matching the graph specified in the LHS and conforming to all
NACs has to be found in the initial graph of the graph grammar. The retrieved subgraph
is called a match, while the retrieval process itself is called pattern matching, which is
explained in further detail in subsection 2.3.3. The rule is then applied to the found
match. If there is more than one match, a random one is chosen. During the application,
contents of the match are modified to fulfill the postcondition, specified by the RHS of
the rule body. Graph transformation rules of the grammar are usually applied as long as
possible, i.e., until no further matches for any rule precondition can be found. Further-
more, rule application may occur in any order (non-deterministic), but can be influenced
by assigning priorities to certain rules.

Agent

Container

Agent: A Agent: B

Site: x Site: z

Link (x,z)

Agent

Container

Agent: A Agent: B

Site: x Site: z

LHS: RHS:

Link Link

Figure 2.8: Graph Transformation

Figure 2.8 illustrates a graph transformation, using a model that conforms to the meta
model shown in figure 2.6. In the example, the rule’s LHS is a connected graph consisting
of two Agent instances of type A and B, each having a site. Sites x and z may not have
a reference to a Link object, i.e., they must not be connected. This is depicted by the
crossed out reference arrows in figure 2.8 and is an example of a NAC. Consequently,
matches are discarded, if sites x and z are already connected to something else. When
a match to this LHS is found, the rule is applied to the subgraph of the model. In this
case, a Link object owned by an Agent Container object is created, with sites x and z
referencing the link and by virtue of that, connecting agent A and B through sites x and
z. Therefore, the rule application has modified the LHS subgraph in such a way that it
satisfies the rule’s RHS.

In this thesis, only model-to-model transformations will be relevant. Therefore, the term
transformation will, henceforth, imply this type of operation. Furthermore, model trans-

21

formations used herein refine models, they do not translate between different metamodels.
As a final remark, transformations within the context of this thesis will be performed in
place.

2.3.3 Pattern Matching

The term pattern matching is widely used and appears in numerous different problem cat-
egories of computer science, which are often only slightly related. For example, Computer
Vision (CV) is a popular domain where the term pattern matching frequently appears in.
Patterns in CV often represent an image patch or some kind of feature descriptor, both
represented by some vector. Hence, pattern matching in the aforementioned case refers
to the process of finding the best match to the feature descriptor in an image matrix,
according to some metric.
Another frequent use case for pattern matching is graph transformation, which plays an
important role in this thesis. As described in the previous subsection, graph transfor-
mation rules have a precondition and a postcondition. The LHS, i.e., the precondition
of a rule, defines a subgraph that must appear in the initial graph, i.e., the model, in
order for a rule to be applicable. Therefore, finding these subgraphs in a model is an
important aspect in model transformation. Since the previously mentioned subgraphs
represent reoccurring patterns in the initial model, the process of finding those is called
pattern matching as well.
As a remark, the term pattern matching only refers to the recognition of reoccurring pat-
terns in a dataset. It does not state how patterns are defined, how they look or even how
they are retrieved. Henceforth, this thesis will use the term pattern matching exclusively
within the context of graph transformations.
There are quite a few approaches to pattern matching on graphs, such as batch and incre-
mental pattern matching approaches, which will be explained in the following paragraph.

Batch pattern matcher pursue a rather straight forward principle. First, the set of all
matches to the LHS sub-graph of a rule is found in the initial graph. From this set, a
random match is selected. These matches are usually found with pattern matching algo-
rithms based on solving a constraint satisfactory problem [LV02] or through local search
algorithms using search plans [Zü96]. The next step is checking for potential NACs, which
might void the previously found match. Eventually, a graph transformation engine mod-
ifies the match according to the rule’s RHS, i.e., it replaces the found sub-graph inside
the model with a copy of the rules RHS sub-graph. For each subsequent graph transfor-
mation rule, all previously found matches are discarded and the above described process
is restarted from scratch.
Experiments in benchmarking graph transformations [VSV05] have demonstrated that
batch pattern matching negatively influences performance, in certain situations. As mod-
els and potentially LHS patterns grow in size, this traditional approach to pattern match-
ing can become a severe performance bottle neck. Such performance problems can appear
in application scenarios, where models containing large amounts of entities undergo rapid
changes. This forces the pattern matcher each time to discard and regather matches, by
searching through a large model.

22

Incremental pattern matcher on the other hand try to mitigate the negative perfor-
mance effects of batch pattern matching on graph transformations, by not discarding
all found matches after every rule application. Instead, changes to the model are reg-
istered and the set of matches is updated incrementally, according to those changes.
Initially, most approaches to incremental pattern matching only provided partial support
for NACs. Later, a working concept was presented by Varrò et al. [VVS06], in which
their incremental pattern matching approach was described.
In the initial step, i.e., the preprocessing phase, all matches to LHS patterns as well as
partial matches are collected and stored in a matching tree. For this a search plan is used,
which knows how to store and construct matches from partial matches, by traversing the
matching tree. The Rete-Network is an example of such a matching tree. After that, each
modification that is applied to the model, triggers an incremental update on the matching
tree. Subgraphs that match NACs are stored and used to invalidate corresponding LHS
matches, during each update. An in-depth explanation to the procedure is presented in a
different paper by Varrò et al. [VVS].

Rete-Networks were designed to make many pattern matching less expensive and were
originally developed for use in system interpreters [For82]. The goal of the Rete Match
Algorithm is to find matches to a set of LHS patterns in an existing model, without having
to iterate over all elements of model, each time it changes.

Agent: A Agent: B

Site: x Site: x

Link (x,x)

(a) Example Pattern

Agent SiteLink

A B x

(b) Example Rete-Network

Figure 2.9: Rete-Networks (1)

The Rete Match Algorithm achieves that goal by generating a decision-network in the
shape of a data flow graph from the given set of LHS patterns. Nodes in this graph have
two basic types: selection and junction. Elements from the model on which the pattern
matcher should search for matches, i.e., the working memory, are passed through the net-
work. Selection nodes remember and pass on elements that satisfy certain criteria, e.g.,
the possession of certain attributes or types. Junction nodes, on the other hand, take
the output from selection nodes and merge them. For example, in the pattern “A Person

23

with name X and age Y” a selection node would check the name, i.e., variable X, and
another one the age, i.e., variable Y. A junction node would in turn represent the “and”,
by joining the output of both selection nodes. The output of such a network would be a
match to the example pattern, containing any person object that has a certain name and
age, depending on the value of the variables X and Y.
For a better understanding of the inner workings of a Rete-Network, consider the follow-
ing example: Figure 2.9(a) shows an exemplary pattern conforming to the meta-model
in figure 2.6, from subsection 2.3.1. It is a basic pattern, which describes two agents of
different types, each possessing sites of a certain type that are connected through a link.
In figure 2.9(b), a data flow graph is created from the given pattern. As we can see,
there are selection nodes for the object type, followed by selection nodes for agent and
site type attributes, respectively. Junction nodes join the output in such a manner that
agents have their correct type, sites and site types. The lowest junction node joins sites
that posses the same link object, i.e., they are linked, and represents the output of the
network. Every element of the model that is saved in the final node is part of a match to
the given pattern.

Agent SiteLink

A B x

Agent: A

Agent: B

Site: X

Site: X
Link

Agent: BAgent: A

Site: X

Site: X

Agent: B & Site: XAgent: A & Site: X

Agent: B & Site: X & Link

Agent: A & Site: X & Link

Agent: A & Site: X

& Link &

Agent: B & Site: X

Figure 2.10: Rete-Networks (2)

The Rete Match Algorithm does not search the working memory for new elements to pass
through the network. Instead, as new elements are added to the model, they are passed
to the Rete-Network for indexation. This process is illustrated by figure 2.10, where a
model subgraph conforming to the pattern from the previous example is passed through
the network. Each node possesses its own table. Elements entering the node are stored
when they match the node’s criterion and passed on to its successor nodes.

24

Elements that leave the working memory are passed to the Rete-Network as well. How-
ever, passing through, the network does not add matches to internal node tables, but
removes them.

As we can see, incrementally updating a graph structure is much more efficient than
discarding every information gathered on a model, whenever it has changed. On the
down side, Rete-Networks grow rapidly with increasing numbers of patterns and pat-
tern sizes. Additionally, each node in a Rete-Network carries its own table for partial
matches. Considering these facts, in certain situations Rete-Networks may consume large
amounts of memory, but in turn can offer much better performance, with respect to
speed, compared to classic pattern matching approaches. Rule-based simulation is one of
those situations, since it implies a large model undergoing frequent transformations, which
would force the batch approach to discard and regather information in rapid succession.
A batch approach might be faster in the first iteration of such simulations, but would
eventually trail behind the incremental approach after subsequent iterations. Therefore,
this thesis relies on tools that perform incremental pattern matching on instance graphs.

25

3 Implementation

This subsection presents the implementation of a new framework for rule-based stochas-
tic simulations of biochemical processes. The resulting software is composed of several
modular components. Therefore, the following subsection shows a brief overview of the
architecture, the interfaces, the involved components and explains the reasoning for the
high degree of modularity. After the overview, a new domain-specific language is pre-
sented, which was developed to model reactions as rules, agents and initial conditions of
the simulation. The third subsection of this chapter is concerned with pattern matching.
It details which general-purpose pattern matching tools are used, how they are embedded
in this framework and which role they are playing in the context of rule-based simula-
tion. The last subsection explains how the simulation itself is working, by detailing the
necessary steps in each iteration.

3.1 Overview

As depicted in figure 3.1, the simulation framework can be divided into three major as-
pects: Meta-Modeling, Configuration and Simulation.

Reaction Rules

DSL

Reaction

Container

Simulation

Configurator

Persistence

Manager

Simulation

Pattern

Matching

Controller

Reaction Rule

Transformer

Pattern

Matching Engine

Meta-Modeling Configuration Simulation

Sets Pattern Matching

Engine Type

Updates Matches

Sets Patterns

Translates Patterns

Sets Rules

Configures

Simulation

Rule Application

Request

Matches

Sets Persistence

Type

Request Model

Instances

Defines Rules,

Agents and

Initial Conditions

Instantiates

Initial Conditions

Figure 3.1: Simulation Framework Overview

The aspect of meta-modeling encompasses the Reaction Container metamodel and the
Reaction Rules domain-specific language. The DSL is used to specify agents and rules,
which are applied to agent instances, contained in Reaction Container instances. De-
tails concerning the meta-modeling part of the implementation are further discussed in
subsection 3.2. The simulation aspect of the framework, which is explained in detail in
subsection 3.3, covers all modules and functionality required during runtime, i.e., the
actual core of the rule-based simulation. This includes pattern matching, model trans-
formation through rule application, checking for termination conditions and recording
simulation statistics. The final aspect, configuration, implements the idea of a modular
framework. It comprises model persistence, i.e., saving and loading of models, and the

27

ability for the user to activate, deactivate or change modules of the simulation framework.

Modularity plays a big role because, besides the goal to enable a rule-based simula-
tion, we would like to evaluate how each general-purpose pattern matching tool performs,
while using patterns of the biochemistry problem domain. For this reason, the Simulation
module is designed in such a way that it is agnostic to the used pattern matcher and can,
therefore, be exchanged.
Another reason for modularity is the fact that some patterns, as they appear in this
problem domain, have turned out to be problematic for general-purpose pattern match-
ing tools. Hence, the Pattern Matching Controller module (PMC) is introduced, which
serves as an abstraction layer between the patterns, defined in the DSL, and the actual
patterns given to the pattern matcher. This makes it possible to apply preprocessing
steps to patterns in order to improve pattern matching performance. Furthermore, to
enable the investigation of possible performance gains, the PMC is designed to be inter-
changeable. The aforementioned problematic patterns, the causes for and solutions to
bad performance of the used pattern matcher, are further discussed in subsection 3.4.

The interaction between modules as well as their functions, can best be explained by
looking at a typical configuration work flow, which produces a simulation of a biochem-
ical process as a result. For a better understanding, the mentioned modules and their
interactions are shown in figure 3.1.
Initially, the model describing agents, rules and initial conditions of the simulation is
created using the DSL. With the help of the Simulation Configurator module, using the
specified model name, this model can be loaded by the Persistence Manager module.
Furthermore, the Persistence Manager module optionally works with a graph database or
conventional XML files. The preferred persistence method can be chosen with the help of
the Simulation Configurator. Then, a Reaction Container instance can be loaded, which
is generated on-demand by the persistence module and in which the actual simulation
takes place. The Reaction Container has a set of agent instances, in which the num-
ber and configuration of the instanced agents correspond to the previously defined initial
conditions. Furthermore, the Simulation Configurator determines which general-purpose
pattern matching tool is used in the background. Additionally, it can be chosen if the
patterns, appearing in the transformation rules, should be preprocessed to improve per-
formance.
Once all these configurations have been carried out, any number of simulation instances
can be created. Settings are automatically applied to simulations by the Simulation
Configurator upon creation.

3.2 Reaction Rules DSL

Before we are able to perform any kind of simulation, we must first determine the prop-
erties of the entities within our simulation, describe how they can interact and define
how many entities exist, in which state, at the beginning. In case of a biochemical sim-
ulation, the simulation participants are biomolecules, more precisely proteins. Since this
thesis uses the rule-based modeling approach, explained in subsection 2.2, proteins are

28

abstracted by so-called agents. Hence, reactions between molecules are represented by
interactions between agents. These interactions are modeled through rules, whose pre-
conditions correspond to certain agent configurations. If such a configuration of agents is
found in the model of the running simulation, the rule is triggered and the found agents
are modified in such a way, that they correspond to the configuration of the postcondition
(see subsection 2.3.2). We can see that the step of modeling plays an important role and
may turn out to be quite complex, regarding the problem domain of biochemistry. For
this reason, a new DSL is presented in this thesis, which is used to create simulation
models.
This new domain-specific language, henceforth, called Reaction Rules DSL, offers the
means to define the above described simulation aspects, like agents, initial conditions and
rules. In addition, termination conditions which end the simulation once they are met,
and agent configurations, which should be observed during simulation, can also be defined
through the Reaction Rules DSL.
The DSL was created with the help of Xtext5, which is a plug-in for the Eclipse Java
IDE6 and is a popular tool for creating custom DSLs. In Xtext, the grammar and the
syntax, e.g., the keywords of a language, can be defined textually using a context-free
grammar. Given this, Xtext creates a model, which in turn is a metamodel to which all
models created with the DSL must conform to. The advantage of this approach is that
all modules, working with models that were created using this language, can rely on the
fact that they conform to the same language metamodel. For example, looking at the
DSL of this thesis, agents can only be connected to each other through sites, because
these models must conform to their metamodel. The here presented DSL has a total of
six keywords: agent, rule, init, obs, terminate and var, which are explained in the
following paragraph.

Listing 3.1: Agent Declaration
1 agent A(x , y) // Dec la ra t i on o f agent A
2 agent B(z{p , q}) // Dec la ra t i on o f agent B

Analogous to Kappa, presented in subsection 2.2.2, an agent is defined with the keyword
agent, which determines the characteristics a possible agent instance can have. For ex-
ample, listing 3.1 in line 1 shows the definition of an agent, with the name A and two sites
x and y. Similar to Kappa, sites enable connections between agents, by sharing the same
link. Site states, on the other hand, serve the purpose of representing different conditions
of certain sites. For example, listing 3.1 line 2 shows how an agent B, with a site z and
two possible states p and q is defined. It is also possible to define more than two states or
no state at all, as is the case with agent A in the first example. The DSL requires agent
identifiers, i.e, names, to be unique. However, the site identifiers must only be locally
unique, i.e., within the context of their agent. The same applies to states, which only
need to have a unique identifier within the context of their site.

Another important component are rules, as mentioned at the beginning. In order to
5 Xtext project page: https://www.eclipse.org/Xtext/
6 Eclipse project page: https://www.eclipse.org/ide/

29

define a rule, the keyword rule must be used. As shown in listing 3.2, an identifier must
first be defined for the rule, followed by the LHS, the direction operator, the RHS and
the application probability. LHS and RHS contain the agent configurations described
earlier. These agent configurations are, henceforth, referred to as agent patterns. Agent
patterns describe the set of agents a subgraph must have in order to match the pattern.
Each agent may also contain a set of sites, with each site potentially having a certain
state. The agent types, defined through the use of agent keyword, can be referenced in
such patterns and describe links between agents via sites. Such links are defined using
link states, which describe links between two sites in a pattern, identified through an
index that is unique within such a pattern. The uniqueness of the index within a pattern
is important in order to later correctly identify linked sites within a pattern, using the
index. The link state is written inside brackets, on the right side of a site, whereas the site
state is written in curly braces, on the left. Only sites and states described in the agent
definitions can be used for this purpose, which is intended to prevent semantic errors in
the simulation. The directional operator of a rule indicates, whether it is a bidirectional
<-> or unidirectional -> rule, which means that the rule can be applied forwards and
backwards, or only forwards. A bidirectional rule basically works like an unidirectional
rule, except that the RHS and the LHS trade places, in case of a backwards rule appli-
cation. The last parameter of a rule, the application probability, specifies the probability
that a rule is applied, if an instance of the LHS is found in the model.

Listing 3.2: Basic Rules
1 r u l e r1 {A(x [f r e e] , B(z [f r e e]) } −> {A(x [1] , B(z [1]) } @ [1]
2 r u l e r2 {A(x [1] , B(z [1]) } −> {A(x [f r e e] , B(z [f r e e]) } @ [1]
3 r u l e r3 {B(z{p } [f r e e]) } −> {B(z{q } [f r e e]) } @ [1]
4 r u l e r4 { void } −> {A(x [f r e e] , y [f r e e]) } @ [1]
5 r u l e r5 {A(x [f r e e] , y [f r e e]) } −> { void } @ [1]

Analogous to Kappa (see subsection 2.2.2), rules can be divided into 5 basic actions: bind-
ing, unbinding, modification, creation and deletion. All basic actions can also arbitrarily
be combined in one single rule.
For example, listing 3.2 line 1 shows the binding of two agents. An agent A is connected
at site x to another agent B at site x. This link is uniquely identified by index 1. The
precondition of this rule states that the sites x of the A type and B type agent must not be
connected. This is indicated by the keyword free, which improves readability, in contrast
to Kappa, where a simple dot is used. In addition, agent patterns are always placed in
curly brackets, which is also a measure to improve readability.
The example in line 2 shows an unbinding, in which the action from line 1 is undone.
As a remark, basically, both rules r1 and r2 could be expressed through a single rule,
by replacing the unidirectional operator with the bidirectional operator in line 1. In this
case, a second rule application probability would have to be added as a parameter in the
square brackets, with the same probability as r2 in line 2.
An example of a modification is shown in line 3, where the state of site z of an agent B is
set from p to q.
A creation rule implies the generation of one or more new agent instances, as defined by
the RHS. If the rule is then applied to a subgraph matching the LHS, new agent instances

30

are added to the model. In Listing 3.2 line 4, an exemplary creation rule is shown. In
r4, the void expression in the LHS must be at the same position as in the corresponding
agent on the RHS, to signal the creation of a new agent instance. This convention not
only serves readability, but also prevents mistakes, when formulating a rule. For example,
the unintentional omission of a parameter on the LHS or RHS.
A deletion behaves inversely to creation, as illustrated by r5. The to be deleted agent
is marked by a void in the agent pattern on the RHS. If the rule is then applied to a
subgraph matching the LHS, the agent instance is removed from the model.

Listing 3.3: Additional Site States
1 r u l e r3_1 {B(z{p } [?]) } −> {B(z{q } [?]) } @ [1] //Wild card
2 r u l e r3_2 {B(z{p } [bound]) } −> {B(z{q } [bound]) } @ [1] //Bound−To−Any
3 r u l e r3_3 {B(z{p } [A. x]) } −> {B(z{q } [A. x]) } @ [1] //Bound−To−Any−Of−Type

As opposed to previous examples, link states do not always have to precisely define both
ends of a link. They can also be ambiguous, which can be expressed by using a question
mark (?), as shown in listing 3.3 rule r3_1. This is useful when looking for an agent, with a
site in a certain state, but the existence of a possible link between this and another site does
not matter. Additionally, rule r3_2 shows the bound-to-any expression, denoted by bound,
which, for example, expresses the requirement for site z to posses a link to another site,
whose type does not matter. The final expression bound-to-any-of-type, demonstrated in
rule r3_3, refines the previously shown one, by restricting the candidates that are eligible
for a connection and is denoted through <Agent>.<Site>. For example, the site z must
have a connection to some other site of type x, with its owning agent being type A.

Listing 3.4: Observables, Initial and Termination Conditions
1 i n i t i 1 10 {A(x [f r e e] , y [f r e e]) }
2 obs o1 | {B(z{q } [?]) } |
3 terminate t1 i t e r a t i o n s =7000
4 terminate t2 time=30000
5 terminate t3 | {B(z{q } [?]) } | ==> 45

In previous sections, it was just assumed that agent instances existed in the model. How-
ever, these must be created first, using the initial conditions, which determine the initial
state of the simulation. Such a condition can be defined with the keyword init, followed
by an identifier for the initial condition, the number of instances to be generated of the
following pattern and the agent pattern itself. For example, the initial condition in listing
3.4 line 1 creates 10 agent instances. According to the pattern, these agents have type A
and their sites x and y will not be connected to other sites.

The obs keyword stands for observable, which is used to track agent patterns of in-
terest, so that statistics about their population can be kept for later output and analysis.
As illustrated by listing 3.4 line 2, in order to trigger an observation of a pattern the obs
keyword must be used, followed by a unique identifier and the pattern of interest. After
completion of the simulation, population statistics for these patterns are marked with
the names given to the observables. In the example, the amount of instances of agents B,
with their sites z in state q, would be tracked, without checking for existing links to site z.

31

A simulation would run endlessly, if nothing else was specified. Since this makes lit-
tle sense, termination conditions are introduced. The simulation terminates as soon as
these conditions are met. In order to create a termination condition, the terminate
keyword, followed by a unique identifier must be used. There are three versions of termi-
nation conditions.
First, a termination condition can limit the maximum number of iterations a simulation
may perform. For example, the termination condition t1 in listing 3.4 would limit a sim-
ulation to 7000 iterations.
Second, a termination condition can also specify the simulation time, after which the
simulation is terminated. For example, the termination condition t2 in listing 3.4 would
limit the simulation time to 30000 milliseconds. However, simulation time does not refer
to the program runtime, but the time elapsed within the simulation, which can be faster
or slower, depending on how active the modeled system is (see subsection 2.2.1).
The third and final criterion terminates the simulation, when a maximum number of oc-
currences of a certain agent pattern has been reached. This can be defined as shown in
listing 3.4 line 5, by specifying a pattern followed by a subsequent definition of an upper
bound. As a note, all different termination conditions can be used simultaneously, the
first one that is met leads to termination.

Since the same agent patterns within a model, written in this DSL, may occur repeat-
edly, e.g., in observables, termination conditions or rules, variables were introduced, to
reduce redundancies. For this purpose, the keyword var can be used to define variables.
These variables may contain numbers, such as integers or floats as well as agent patterns.
Thus, redundancy can be avoided and repeating patterns have to be defined only once.
After that, variables containing patterns can simply be referenced by observables, rules
and termination conditions.

As we can see, many of the presented functions, attached to certain keywords, have syn-
tactic limitations, e.g., unique identifiers. These restrictions are automatically checked,
while the model is written in the editor, which is a feature of Xtext and was an additional
reason to choose this tool. Furthermore, semantic highlighting is supported, which indi-
cates semantic errors during input, e.g., forgetting a void expression in an agent pattern,
or entering a negative value as a rule application probability. In addition, scoping is per-
formed in the background, which ensures that only variables, agents, sites, etc. that have
previously been defined, can be used in agent patterns. The user will automatically be
notified, if a referenced model element is not present. This also allows a limited automatic
code completion, i.e., suggestions for the user about possible variables or keywords, which
could be used at the moment.

The Reaction Rules DSL is a self-contained plug-in for Eclipse based on Xtext, which
can be installed and used independently of the simulation framework. An editor with
syntax and semantic highlighting is provided, which checks scoping and automatically
generates an EMF compliant model as an XMI file, in addition to the textual repre-

32

sentation, when saving. This model can then be used to initialize a simulation in this
framework.

3.3 Simulation

This section presents the actual core of the simulation framework, the Simulation mod-
ule itself. Therefore, the following subsection 3.3.1 describes how agents, mentioned in
the previous subsection, are instantiated. Furthermore, subsection 3.3.2 specifies which
settings have to be configured, before the simulation can start and which packages are
involved in the Simulation module as a whole. Finally, an overview of the simulation
process is given in subsection 3.3.3 and each step of the simulation is explained.

3.3.1 Reaction Container Model

As discussed in the DSL subsection, a simulation must have a model that describes the
properties and the number of simulation entities as well as their possible interactions. For
this reason, the Reaction Rules DSL was introduced, which is a text-based tool and is used
to describe simulation models. Given such a model, one important necessary preparation
that has to be done before running the simulation, is the generation of agent instances
according to initial conditions.

The simplest approach would be to make copies of the agent patterns, defined in the
initial conditions, as often as necessary. However, it is not that simple for several rea-
sons. For example, in these agent patterns connections between sites are only assigned
by indexes, i.e., ordinary integers that do not carry any information, to which sites they
belong to. This would not only make pattern matching more difficult, but also makes rule
application through graph transformation inefficient. Furthermore, the model carries a
lot of information, e.g., the previously mentioned initial conditions, variables, etc., which
are no longer important in the running simulation. However, the main reason not to
follow the simple approach comes from the experience that generating models, with large
numbers of agent instances, can take some time. A generation would be triggered, every
time a valid model is saved in the editor of the DSL. This could be prevented through
a different implementation of the model generator and by dividing the model generation
into two steps. The first part would be triggered after the creation of the model in the
DSL editor and would not yet have any instances of the agents. Followed by a second
model generation, which would then insert the necessary agent instances into the model.
However, this approach poses a huge problem because the synchronization between the
textual model definition in the DSL and the representation of the model in the XMI file
would be lost.
In order to avoid these problems, a second metamodel is defined, in addition to the DSL
metamodel, whose instances serve only as containers, in which simulations run. The Reac-
tion Container metamodel is shown in figure 3.2, it carries the agent instances, as defined
in the initial conditions, inside a container object. As shown in the figure, agent instances
are referred to as SimAgents, sites as SimSites and states as SimSiteStates. These names
are chosen to clarify that these are instances of agents and are used in the simulation.
Connections between agents, via their sites, are established by references to SimLinkState

33

[0..*] simAgent [0..*] simSites

[1..1] simSite1

[0..1] simSiteState

[1..1] simSite2

[0..*] simLinkStates

[0..1] simLinkState

Figure 3.2: Reaction Container Model

objects. This simplifies the pattern matching later on, since only possession and equality
of SimLinkState objects must be checked, in order to find connected agents.
The presented metamodel is deliberately kept very simple, but it leaves room for ex-
pansion. For example, it is possible to add other link types, through implementing the
SimLinkState interface.

3.3.2 Simulation Setup

Before the details of the simulation process are discussed in detail, it is important to
first look at the involved modules and the necessary steps to configure them. Figure 3.3
provides an overview of the main modules involved in the simulation.

Simulation

Pattern

Matching

Controller

Reaction Rule

Transformer

Pattern

Matching Engine

Simulation

Updates Matches

Translates Patterns

Rule Application

Request

Matches

Figure 3.3: Simulation Modules

The first module is the Reaction Rule Transformer, which contains all classes needed to
apply rules formulated in the DSL to the model, during simulation. The next module is
the Pattern Matching Controller, which ensures that patterns, specified in the rules, are
converted in such a way that general-purpose pattern matching tools can process them.
The Pattern Matching Engine module works in tandem with the PMC and contains classes
that wrap the pattern matching tools. Additionally, it processes matches in such a way,
that they can be used by the PMC. Simulation, the main module, implements a stochas-
tic simulation, according to the algorithm described in subsection 2.2.1. In addition, the

34

Simulation module contains classes that implement statistics output, termination condi-
tions, and configuration of the simulation.

The setup itself is divided into two phases. First, the configuration of simulation fea-
tures, via the Simulation Configurator. During this, the Reaction Rules model, to be
loaded, and the Reaction Container model, to be generated, are set. This is accom-
panied by a definition of the persistence solution used to load the model. The default
variant is using XMI files, supported by the EMF framework. Alternatively, an EMF
compliant graph-based database, called NeoEMF7, can be chosen as well. Furthermore,
the pattern matching tool is selected, which can either be Viatra or Democles. Finally,
the implementation variant of the pattern matching controller is chosen. This can be
the simple variant, which does not preprocess patterns and only translates them for the
pattern matcher. Alternatively, an extended PMC variant can be picked, which further
processes patterns, with the aim to improve pattern matching performance. This subject
is explained in detail in subsection 3.4
The second phase starts after the configuration with a newly created simulation object.
During its initialization, the simulation object loads the specified Reaction Rules model
and the corresponding Reaction Container model. Furthermore, all rules are extracted
and passed to the transformation module, which can then initialize its graph transfor-
mations. In addition, all patterns are extracted and transferred to the PMC, which then
supplies them to the Pattern Matching Engine module and initializes the pattern matcher
with the received Reaction Container model. Finally, all observables and termination con-
ditions are generated, to enable the tracking of statistics on pattern populations and the
automatic termination of the simulation.

3.3.3 Simulation Execution

The simulation implements the concept of Gillespie’s algorithm, presented in subsection
2.2.1, and consists basically of a single loop.

Simulation

starts

Update

Matches

terminate == „false“

Update

Activity

Update

Time Step

Draw Random

Rule

Apply Rule

Store Match

Statistics

Advance Time

& Iterations

Check

Termination

Conditions

Update

Matches

terminate == „true“

Store Match

Statistics

Simulation

ends

1 2 3 4

6

5

78

Figure 3.4: Simulation Loop

7 NeoEMF project page: https://www.neoemf.com

35

At the beginning, as illustrated by figure 3.4, the state of the model is checked. This
means, in step 1, the pattern matching engine is ordered to update its internally stored
matches to patterns, specified in the Reaction Rules model. The EMF framework ensures
that a notification is automatically sent to the pattern matcher, each time the model is
changed by the application of a rule. Following that, all registered changes, applied to
the model in the last iteration, are taken into account and all matches are incrementally
updated, as described in subsection 2.3.3.
Following that, in step 2, the simulation’s state, stored in a state object, is transferred
to an instance of the SimulationStatistics class. It checks if observables want to record
certain pattern population statistics and queries the active PMC, contained in the state
object, for the match counts corresponding to patterns defined by observables. These
statistics are stored in addition to the current simulation time and can be displayed as an
xy-plot, when the simulation has finished.
After this, in step 3, the activity of the individual rules and, thus, the activity of the
entire system can be determined according to the first step of Gillespie’s algorithm.

aµ = hµcµ , µ ∈ [1, ..., M] (10)

The activity aµ can be calculated using equation 10 and requires the number of matches
hµ, provided by the pattern matcher, and the static rule application probability cµ of a
rule Rµ. The application probability indicates how likely it is that a rule will be applied
to a found match of its LHS. Consequently, the activity of a rule Rµ is a measure of how
likely it is that a rule will be selected and applied, given the number of found matches
and its static application probability cµ.

a0 =
M∑

v=1

av =
M∑

v=1

hv cv (11)

The activity a0 of the system is determined by equation 11. Since a0 is the sum of all
rule activities, it can be used to discern whether the simulated biochemical system is
particularly active or not.

τ=
�

1
a0

�
ln
�

1
r1

�
(12)

In Step 4, the time interval τ can now be determined through equation 12, using the
previously calculated system activity a0 and a random number r1. When looking at
this, we can see that the length of the time interval in Gillespie’s algorithm depends on
how active the system is. This makes sense because for occasions, where many reactions
happen in the system in a small amount of time, the temporal resolution must be high
in order to simulate all of them. If, on the other hand, the system is very slow, then
it would be rather unfavorable to make many small simulation steps, in which nothing
would happen.
Once the time step and the system activity have been determined, a rule Rµ can be
selected in step 5. This does not happen arbitrarily, but according to a distribution

36

density function, as postulated by Gillespie. The rule is selected in such a way that the
equation 13 is satisfied.

µ−1∑
v=1

av < r2a0 ≤
µ∑

v=1

av (13)

If we consider this equation, we can see that with the help of a random number r2, be-
tween 0 and 1, as well as the system activity, a new number is determined, which lies
between 0 and the system activity a0. Thinking about the way the system activity is
composed, namely from the sum of the rule activities, it becomes clear that the previ-
ously selected number is located in an interval defined by a rule’s activity aµ. The drawn
random number then determines the rule through the corresponding interval it fits into.
Thus, the probability that a rule is selected is proportional to its activity. This in turn
implies that rules, whose preconditions have no matches, can never be selected because
their activity amounts to zero.
In step 6, the identifier of the selected rule is transferred to the Reaction Rule Trans-
former module, along with a randomly selected match from the set of all matches to a
rule’s LHS. In the module, a graph transformation, as presented in subsection 2.3.2, is
performed, which means that the match to the LHS of the rule is changed, such that it
corresponds to the RHS of the rule. This could, for example, result in states and link
states of sites being deleted or moved and agent instances being created or deleted in
order to transform the match according to the RHS of the rule. Since Reaction Container
models are all based on EMF, the EMF framework takes care of propagating changes
applied to the model, i.e., modifications made to entities referenced by a match, by send-
ing notifications. As indicated in the setup paragraph, the receiver of such notifications
are general-purpose pattern matching tools, wrapped by the Pattern Matching Engine
module.
Following the rule application, in step 7, the simulation time of the simulation state is
updated, i.e., incremented by the value of the current time step. In addition, the state’s
iteration counter is increased by 1.
In the final step of the loop, it is checked if one of the termination conditions, previously
defined in the Reaction Rules model, is satisfied. For this purpose, the SimulationState
object is given to an instance of the SimulationTerminationCondition class. This object
checks whether a possible time or iteration limit has been reached. If this is not the case,
it is checked whether limits for pattern populations have been defined. If so, the PMC
is asked for the corresponding match counts for these patterns. When one of the defined
termination criteria is fulfilled, the main loop of the simulation is exited. Otherwise, the
simulation is resumed at the first step.
When leaving the simulation loop, the pattern matcher is ordered to update all matches,
so that at the end an up-to-date output of the match counts of different patterns is pos-
sible.

As we can see, the basic concept of the simulation is kept quite simple and implements
the ideas of Gillespie. The difference to the other approaches, presented in section 5,
also based on Gillespie’s algorithm is that in this approach, the tracking of all possible

37

matches to agent patterns and especially their modifications is not performed through
book keeping. Instead, general-purpose pattern matching tools are used. How these tools
are integrated as well as the necessary steps needed for these tools to be able to handle
agent patterns, is explained in the following subsection.

3.4 Pattern Matching

As we could see in the previous subsection, it is of central importance to be able to find
all matches to the LHS of rules, defined in the DSL, during the simulation. The number
of these matches is important in order to calculate, for example, the activity of a rule.
Additionally, an actual instance of a rule’s precondition, i.e., a match, is required so that
a graph transformation, described by a rule, can be performed. As indicated at the end
of subsection 3.3.3, other simulation tools that also simulate biochemical processes, with
the help of rule-based modeling and stochastic simulation, often use proprietary solutions
to find matches on rule preconditions. In most cases these solutions are not described
in detail and work as black boxes in the background. In the framework presented in
this thesis, general-purpose pattern matching tools are used for the purpose of finding
matches. These are characterized by their high degree of expressiveness, which means
that these tools can be used to describe anything, from simple to very complex patterns,
within all conceivable problem domains. However, this generic nature implies that agent
patterns, described in the DSL from subsection 3.2, cannot be used by the pattern match-
ers without any preprocessing. These patterns have to be translated into patterns that
can be understood by a general-purpose pattern matching tool. This process could be a
translation into a proprietary DSL, as it is the case with Viatra. On the other hand, such
a translation could also imply that the patterns are translated directly into the tool’s own
patterns, conforming to some metamodel, as is the case with Democles.
Since a translation step is required, the so-called Pattern Matching Controller was intro-
duced as part of this work. One of the module’s tasks is to convert patterns that were
defined using the Reaction Rules DSL in such a way that they are usable by the respective
pattern matching tool. In addition, matches returned by the pattern matcher must be
converted to a more generic representation, since it should be of no concern to the simu-
lation from which type of pattern matcher these matches came from. This prevents the
creation of specialized solutions for each employed pattern matching tool and generally
simplifies switching between different pattern matchers. Finally, there is another moti-
vation behind the PMC, namely to preprocess patterns, if necessary, before converting
them in order to make the process of pattern matching, using general-purpose pattern
matchers, more efficient and, hence, to improve performance. An example of such prepro-
cessing, which is already built into this framework, is given in subsection 3.4.4. However,
the following subsection will first explain how to convert patterns into the Viatra pattern
language. Following that, in subsection 3.4.2, the necessary steps for the conversion into
Democles patterns are explained.

3.4.1 Viatra Patterns

As mentioned before, the Viatra pattern matching tool comes equipped with its own
DSL. This allows the specification of patterns, for which matches are to be found in a

38

model. The interpretation of these patterns is performed by the Viatra framework. This
means, that the user does not have to worry about creating pattern models, which have
to conform to the internally used Viatra pattern metamodel.

Reaction

Rules DSL

Model

Pattern 1

Pattern 2

…

…

Interpreted

Patterns
Viatra DSL

Model

Extraction
1

Interpretation
2

Code generation
3

Viatra

Patterns

Interpretation
4

Figure 3.5: Viatra DSL Translation

The work flow from Reaction Rules DSL patterns to an initialized Viatra-based pattern
matcher is as follows: In the first step, all agent patterns are extracted from a model
created with the Reaction Rules DSL, as shown in figure 3.5. As described in subsection
3.3.2, this step is performed during the setup phase, immediately before the simulation
starts. In step 2, these patterns are interpreted and in step 3, converted into the syntax
of the Viatra DSL, using a code generator. The model described through the Viatra
DSL is interpreted by the Viatra framework, as mentioned above, and in the final step,
Viatra patterns are generated from it. Using these patterns, a new pattern matcher is
created, which can be initialized with a model that conforms to the Reaction Container
metamodel.

A ?
x ?

B ?
y ?

p

Figure 3.6: Pattern Translation – Example Pattern

How agent patterns, written in the Reaction Rules DSL, can be converted to patterns
conforming to the Viatra DSL, is explained in the following paragraph, using an example.
Figure 3.6 shows a simple pattern, which requires an agent of type A, whose site x is in a
state p (orange diamond) and is not connected to another site. In addition, this pattern
requires an agent of type B, whose site y can be in any state and must not be connected
either. Listing 3.5 line 2 shows this pattern in the syntax of the Reaction Rules DSL.

Listing 3.5: Pattern Translation – Reaction Rules DSL Pattern (1)
1 // Reaction Rules DSL
2 {A(x{p } [f r e e]) , B(y [f r e e]) }

Listing 3.6 shows the much longer Viatra code, which corresponds to our short example
in listing 3.5. Looking at the Viatra code, we can see that the pattern is divided into
a signature and a body. In the signature, a unique identifier is assigned to the pattern

39

and global context nodes are defined. Global context nodes serve a similar purpose like
parameters that are passed when a function is called. They are available in the body as
constant variables and can be referenced. In listing 3.6 line 2, these context nodes rep-
resent two SimAgents from the Reaction Container metamodel, which can be referenced
using the identifiers A and B.

Listing 3.6: Pattern Translation – Viatra-DSL Pattern
1 // Viatra−DSL
2 pattern p1 (A : SimAgent , B : SimAgent) {
3 // Def ine agent types
4 SimAgent . Type (A, ”A”) ;
5 SimAgent . Type (B, ”B”) ;
6 // Def ine s i t e types & s t a t e s
7 SimAgent . s imS i t e s (A, A_x) ;
8 SimSite . Type (A_x, ”x ”) ;
9 SimSite . s imS i t eS ta t e . Type (A_x, ”p ”) ;

10 SimAgent . s imS i t e s (B, B_y)
11 SimSite . Type (B_y, ”y ”) ;
12 // Def ine l i n k s t a t e s
13 neg f i n d support_pattern (A_x) ;
14 neg f i n d support_pattern (B_y) ;
15 }

Line 4 in the body ensures that a SimAgent instance, referenced through identifier A, has
type A as well, by using an attribute constraint. This means, that for a correct match
only SimAgent instances are allowed, whose string attribute, named Type, has the value
"A". Analogous, a similar constraint is applied to SimAgent B in line 5.
For the next steps local context nodes are required. These nodes represent context that
must exist in addition to the signature nodes, for a match to be valid. For example,
sites are not part of the signature in the Viatra pattern, but according to the pattern in
listing 3.5, must exist and must have a certain type. In order to ensure that this required
context exists, local context nodes describing these sites are defined. For this purpose,
local context nodes for SimSites are created in line 7 and 10, using a constraint, which
ensures that a site belongs to a certain agent. For example, this would check if a reference
to a SimSite instance is located in the site container attribute of SimAgent B. In lines 8
and 11, site types are determined analogously to the definition of a SimAgent type. In
the case of SimAgent B, this would be the type y and for the SimSite belonging to A, the
type x is required.
A local context node is also created for the state of a site, expressed through a SimSiteState
object. In line 9, a constraint ensures that this instance also belongs to SimSite x of
SimAgent A and has the type p.
Finally, it is ensured that site x and site y are free, which means that they do not have
existing connections to other sites. A so-called support pattern is used for this, since the
absence of context nodes can not be formulated in the Viatra DSL. A support pattern is
called from within a different pattern’s body and can receive context nodes as parameters,
similar to a function call. The returned match set of the support pattern, is then used as
context by the calling pattern.

40

Listing 3.7: Pattern Translation – Viatra-DSL Support Pattern
1 pattern support_pattern (s i t e : SimSite) {
2 SimSite . s imLinkState (s i t e , _) ;
3 }

Such a support pattern is shown in listing 3.7 and requires a SimSite as a global context
node. The attribute constraint in line 2 demands that a SimSite instance must have a
SimLinkState instance, in order to match this pattern. The underscore represents a wild
card and expresses that any type of SimLinkState object is allowed. In listing 3.6 lines 13
and 14, this support pattern is called and its returned matches contain all SimLinkState
objects referenced by the given SimSites with type x or type y, respectively. The negation,
expressed through the neg keyword in both lines, has the effect that this pattern is only
matched, if said sites do not have references to SimLinkState objects.
If we want the opposite, i.e., both SimAgents should be connected to each other, we must
create local context nodes representing SimLinkStates, for both SimAgents A and B. These
two local context nodes can then be checked for equality. If both are equal, it is certain
that the instances of A and B are connected to each other, at sites x and y through the
same SimLinkState instance.

Listing 3.8: Pattern Translation – Reaction Rules DSL Pattern (2)
1 {A(x [f r e e]) , A(x [f r e e]) }

One problem, however, has not yet been taken into account, that of injectivity. When
looking at listing 3.8, we can see that, this time, the second required agent also has the
type A, as opposed to listing 3.5. If we would translate this into a Viatra pattern naively,
the pattern matcher would return matches containing the same instance of SimAgent A
twice. This means, that this instance was selected for both, the first and the second global
context node, which does not make sense when we look at what the pattern implies, i.e.,
two different proteins of the same type. In order to avoid this problem, so-called injec-
tivity constraints are introduced. These are automatically inserted into the pattern, if
SimAgents of the same type are required in the global or local context. This can easily
be realized by using a constraint, demanding two SimAgents of the same type being un-
equal. If two SimAgents are equal, the pattern containing the injectivity constraint is not
matched.

Using the above presented schema, any pattern formulated in the Reaction Rules DSL can
be translated into the Viatra DSL. As a remark, a detailed explanation for the translation
of Bound-To-Any and Bound-To-Any-Of-Type link states is omitted, since it would only
lead to the reiteration of previously described steps, in a slightly modified form. This
would not contribute to the understanding of the translation process and only increase
the complexity of the given examples.

3.4.2 Democles Patterns

Unlike Viatra, the Democles pattern matching tool does not include a DSL, which could
be used to define patterns textually. Democles requires that patterns are compiled directly

41

from the components defined in the Democles pattern metamodel. In the framework pre-
sented in this thesis, a pattern compiler, written in Java, constructs patterns that conform
to the Democles pattern metamodel and semantically correspond to the patterns defined
in the Reaction Rules DSL.

Reaction

Rules DSL

Model

Pattern 1

Pattern 2

…

…

Interpreted

Patterns
Democles

Patterns

Extraction
1

Interpretation
2

Compilation
3

Figure 3.7: Democles Pattern Translation

The work flow from the Reaction Rule model to the initialized Democles-based pattern
matcher is shown in figure 3.7. In the first step, patterns are extracted from a model
created with the Reaction Rules DSL, during the setup phase of the simulation. As a
second step, these patterns are interpreted and unlike Viatra not converted to another
DSL, using a code generator. Instead, they are directly compiled into Democles patterns.
With these patterns and a Reaction Container model, a Democles pattern matcher can
be created and initialized.

In the following paragraph, the process of converting Reaction Rule patterns to Democles
compliant patterns is explained, using the example shown in figure 3.6 and listing 3.5.
Initially, a Pattern object must be created and a unique identifier is assigned, analogous to
Viatra patterns in subsection 3.4.1. This Pattern object has a signature, which contains
the global context nodes and a body, describing the requirements of the pattern.
To define a signature, a PatternSignature object must be created, to which all context
nodes corresponding to the agents in the agent pattern are added, one after the other.
Such a context node is represented by an EMFVariable object, which has a unique name
and knows the type of the context node. For example, A as variable name and SimAgent
as type, in the case of agent A. Semantically, this has the same meaning as the expression
in line 2 in listing 3.6.
The body of the pattern is defined through a PatternBody object. First, the types of the
agent context nodes are defined, similar to a Viatra pattern body. An Attribute object
ensures that the context node, here an instance of a SimAgent, has a type attribute.
This is a constraint that does not check the value of the attribute, but its existence and
data type. When we consider the example, this would be a check for the existence of an
attribute with the name Type and its data type String, for SimAgent A as well as for
SimAgent B. In Democles, the check for a certain attribute value is then performed with
a RelationalConstraint object. As parameters, the RelationalConstraint object receives
the type of comparison, e.g., Equal or Unequal, a reference to the attribute, in which the
value to be compared is located, and the value that must be checked. For example, the

42

value "A" in the case of SimAgent A. This procedure, semantically, corresponds to the
line 4 and 5 in listing 3.6.
The definition of a SimAgent’s SimSite type, is almost analogous to the definition of the
agent type. The difference is that the existence of a reference to a SimSite object, in
the SimSite’s container attribute of a SimAgent object, must first be ensured. For this
purpose, a Reference object is used in Democles, which receives the type of the container
attribute, the SimAgent itself and a local context node, representing a SimSite. This ref-
erence constraint checks, if a reference to a SimSite object exists in the container attribute
of a SimAgent object. The required site type, is then ensured the same way the agent type
is checked. Again, an Attribute object is created, which receives the data type and the
name of a SimSite’s type attribute, in this case Type and String. Then the value of the
attribute Type is checked, with the help of a RelationalConstraint object and compared
to the required value of the attribute. For example, x is the value for the site type, in the
case of agent A from listing 3.5. Equivalent to this, are lines 7 through 8, and 10 through
11 in listing 3.6.
The site state is determined analogously to the procedure, just described. When the ref-
erence constraint is created, it is not checked if a SimAgent has a reference to its SimSite.
Instead, the constraint checks if a SimSite has a reference to a SimSiteState object. Then,
the name and data type of the Type attribute as well as its value is defined, with the help
of the attribute and relative constraints. This corresponds to line 9 in listing 3.6, in the
Viatra DSL. For example, site x should have a state p, in case of agent A.
In order to ensure that SimAgents do not have an existing connection at their SimSites,
a support pattern has to be used for Democles as well. The support pattern is designed
to find all SimLinkState objects, which belong to SimSite context nodes having a certain
type. This is done using a Reference object, the same way as checking the existence of
SimSites in a SimAgent. The resulting constraint, then ensures that an instance of a
SimSite has a reference to a SimLinkState object. This support pattern, similar to the
one in the previous subsection, is called and negated. As a consequence, only SimSite
objects that do not have a reference to a SimLinkState object are allowed. This ensures
that SimAgents are not connected at SimSites.
If, on the other hand, we want SimAgents to have a connection at their SimSites, we
can proceed in the same fashion as when defining sites and states. This means that for
SimAgents a reference constraint is used to check, if their SimSites have references to
SimLinkState objects. These SimLinkStates are then checked for equality, with a Rela-
tionalConstraint.
Using Democles, injectivity constraints must be inserted as well, to prevent multiple
usage of the same SimAgent object in a match. This is done at the end of the pat-
tern body creation. For this purpose, a relational constraint is introduced for each pair
of context nodes representing a pair of SimAgent objects with the same type. This con-
straint does not check for equality of the given context nodes as before, but for inequality.

As in subsection 3.4.1, the description of the conversion for other link states is omit-
ted as well, since this would not present any new Democles functionality. In fact, it
merely repeats the steps already explained.

43

As we can see, the process used to translate Reaction Rule patterns to Democles patterns
is shorter, but a the same time more complicated, compared to Viatra. The advantage,
however, is that the step of code generation and reinterpretation through the Viatra
framework is omitted.

3.4.3 Disjunct Sub-Patterns

With the previously described methods Reaction Rules DSL patterns can be translated
directly into the appropriate form, required by the general-purpose pattern matching
tools. For these patterns, the corresponding pattern matcher finds all matches in a given
model. This set of matches is then used to determine the probability with which a rule is
applied, as described in 3.3.3. For this, the PMC module has to translate the patterns,
initialize the pattern matcher, update the match set of a rule, if necessary, and output
the number of matches.
However, certain patterns have turned out to be problematic, making it necessary to
extend this process. These problematic patterns all share one property, namely the fact
that some of the described agents are not linked, through their sites, to other agents in
the pattern. This means, that the graph, which represents such a pattern, is not fully
connected. Therefore, the graph can be divided into a set of unconnected subgraphs,
which in turn represent sub-patterns of the given pattern. Nodes in this kind of graph
represent agents and edges represent links between sites.

A ?
x ?

B ?
y ?

C ?
z ?

Figure 3.8: Disjunct Sub-Patterns – Example Pattern

Figure 3.8 shows an example of such an unconnected pattern, henceforth, called disjunct
pattern. In this example, three agents A, B and C are defined, whose respective sites x,
y and z are free and, therefore, represent three independent sub-patterns. Here, it is
assumed that a Reaction Container model contains 4 SimAgents for each type A, type B
and type C, whose SimSites do not contain a reference to SimLinkStates. This means,
that a pattern matcher will find 4 matches for each sub-pattern. In order to determine
the entire match set for the pattern from figure 3.8, the pattern matcher basically tries all
possible combinations of matches on the sub-patterns and remembers the combinations
that do not contradict any defined constraints. For example, the number of all ordered
pairs, which can be constructed from matches on sub-pattern A and B, corresponds to the
product of the number of matches on A and B. This is basically the product of two sets,
which is also called cross product in set theory and is defined according to equation 14.

A× B = {(a, b) | a ∈ A and b ∈ B} (14)

X1 × ...× Xn = {(x1, ..., xn) | x i ∈ X i ∀ i ∈ {1, ..., n}} (15)

Looking at the example from figure 3.8, we can see that we do not only need the cross
product of match sets A and B but also of C. This is called an n-ary Cartesian product,

44

which is defined in equation 15 and produces the set of all nested ordered pairs that can
be formed from n sets. In the case of this example, the number of matches in the whole
match set is be given through |A× B × C |= |A| · |B| · |C |= 4 · 4 · 4= 64

If we think about the potentially massive numbers of agents, which may appear in the
simulation of biochemical processes, it becomes clear that match counts can explode very
quickly. As a result, the matching process may take an unreasonable amount of time, since
all combinations have to be checked. Additionally, due to the way the Rete-Networks,
used in pattern matchers (see subsection 2.3.3), manage matches, this explosion in match
occurrences will lead to a great increase in memory consumption.

3.4.4 Hybrid Pattern Matching

As described in the previous subsection, disjunct patterns can lead to a major perfor-
mance problem. This is especially problematic because this pattern type is very common
in the problem domain biochemistry. After all, we typically want to connect molecules
that are not yet connected with each other. To find such unconnected molecules, we need
to formulate said problematic patterns. Consequently, it is essential to avoid the explosive
increase of matches to such patterns.

The idea is to divide disjunct patterns into their constituent sub-patterns. Then, trans-
late these sub-patterns and initialize a pattern matcher. To calculate the match count
of an original disjunct pattern, we use the match count of its sub-patterns. Since this
method does not purely rely on the power of general-purpose pattern matching tools, but
instead, introduces a preprocessing step to improve pattern matching performance, it is,
henceforth, called hybrid pattern matching. This hybrid approach will prevent the usage
of disjunct patterns with pattern matchers and, thus, remove the explosive increase of
match occurrences.

Reaction

Rules DSL

Model

Pattern 1

Pattern 2

…

…

Interpreted

Patterns

Engine

Specific

Patterns

Extraction
1

Interpretation
2

Deconstruction
3

Interpreted

Sub-

Patterns

Translation
4

Figure 3.9: Hybrid Pattern Translation

As depicted by figure 3.9, an additional step is inserted into the pattern translation pro-
cess, making use of the abstraction layer provided by the PMC module. This additional
step preprocesses patterns in the setup phase of the simulation. During this preprocessing,
the PMC splits original patterns into its constituent sub-patterns. Furthermore, it stores
a mapping from the original patterns to its sub-patterns and, thus, enables a mapping of
sub-pattern match counts to their original patterns. As a result, the match count of an

45

original pattern can be determined, using the n-ary Cartesian product (see equation 15)
and the mapped match counts of its sub-patterns.

A B
x y

C D
z w

Disjunct Pattern

Non-Disjunct

Sub-Pattern

Non-Disjunct

Sub-Pattern

Figure 3.10: Hybrid Approach – Disjunct Pattern (1)

For this procedure to work, all sub-patterns that constitute the original patterns must
be determined. A useful characteristic, which helps us to do this task, is the fact that
patterns can be represented by graphs. Hence, disjunct patterns can be described by a
set of non-disjunct subgraphs. When we look at the example pattern in figure 3.10, it
becomes clear what is meant by that. In the shown pattern, agent A and agent B belong to
the left subgraph (orange) and agents C and D, to a second subgraph on the right (green).
In these graphs, agents A to D correspond to nodes and link states, connecting the sites
to edges.
Algorithm 1 shows how subgraphs are discovered in this thesis. The procedure is basically
a tree traversal, not unlike Prim’s or Kruskal’s algorithm, used to find minimal spanning
trees. The major difference, is that finding the minimal spanning tree is not important.
Instead, finding any tree that connects all nodes, i.e., agents in a subgraph, is sufficient.
For this purpose, a node of the node set, representing a copy of the original pattern graph,
is removed in each iteration of the main while-loop, in line 4, and added to an empty set.
Then, all outgoing edges, described through link states of an agent’s sites, are extracted
and packed into a list. If this list is empty, the current node does not have outgoing
edges, which means that the current subgraph consists only of this singular node and is,
therefore, completed. In the inner while-loop, in line 9, edges from the list are popped,
i.e., removed from the top in each iteration. If the current edge is not of type Bound, it
does not connect two nodes, and is, therefore, discarded. After that, the target node is se-
lected, i.e., the node that is the target of this edge, with its source being the current node
from line 5. This node is then removed from the set of pattern nodes and its extracted
outgoing edges are added to the current list of edges. In line 18, the target node is finally
added to the current set of sub-pattern nodes. The inner loop terminates, when there are
no edges left in the outgoing edges list. After the inner loop is finished, the completed
sub-pattern, represented by a set of nodes, is added to the list of sub-patterns. The outer
loop terminates, when there are no nodes left in the set that contained all pattern nodes.
When the outer loop terminates, the list of patterns is returned.

N = | X1 × ...× Xn|=
n∏

i=1

| X i| (16)

Using match counts |X i| of sub-patterns, gained through the described algorithm, and

46

Algorithm 1 Finding Sub-Patterns using a Spanning Tree Algorithm
1: function splitPattern(setOfNodes)
2: listOfPatterns← ;
3: pattern← cop y(setOfNodes)
4: while notEmpt y(pattern) do
5: currentNode← pop(pattern)
6: currentPattern← {currentNode}
7: outgoingLinks← ex t ractOut going Links(currentNode)
8: if empt y(outgoingLinks) then
9: addToList(listOfPatterns, currentPattern)

10: continue
11: while notEmpt y(outgoingLinks) do
12: currentLink← pop(outgoingLinks)
13: if equals(currentLink.type, ”Bound”) then continue
14: if unequals(currentLink.source, currentNode) then
15: candidateNode← currentLink.source
16: else
17: candidateNode← currentLink.target
18: remov eF romSet(pattern, candidateNode)
19: addAllToList(outgoingLinks, ex t ractOut going Links(candidateNode))
20: addToSet(currentPattern, candidateNode)
21: addToList(listOfPatterns, currentPattern)
22: return listOfPatterns

applying equation 16, derived from the n-ary crossproduct, in principle, the total match
count N of a disjunct pattern can be determined. However, there is still one case that
needs to be considered in order for this approach to work.

A

x

A

x

A

x

Disjunct Pattern

Non-Disjunct

Sub-Patterns

Figure 3.11: Hybrid Approach – Disjunct Pattern (2)

Figure 3.11 shows a pattern, which would generate the wrong match count, if equation 16
was used. An injectivity constraint is required for this pattern, so that the same SimAgent
instance with type A is not used 3 times in the same match. Consequently, this means
that such a constraint subsequently reduces the match count, by the number of matches

47

that violate the constraint. This circumstance is not considered in equation 16, which
simply represents the n-ary Cartesian product. If we think about what the cross product
represents, namely the set of all ordered pairs of elements that can be constructed from
two sets, it becomes clear that an injectivity constraint only removes those pairs, where
the same element is used twice.

A

x

A

x

A

x

A
1

A
2

A
3

A
4

A
1

A
2

A
3

A
4

A
1

A
2

A
3

A
4

ꓯ (Ai, Aj) : i � j ꓯ (Ai, Aj) : i � j

ꓯ (Ai, Aj) : i � j
-1 -1

-1

Figure 3.12: Hybrid Approach – Injectivity Constraints (1)

Generalizing this to arbitrarily sized patterns is a little more complicated and is best
explained using an example. For this reason, figure 3.12 is provided, which shows the
matches found for their respective sub-pattern. SimAgent instances are listed below
their matching nodes, representing agents of type A. The model, in this example, has 4
SimAgents of type A. Since all sub-patterns describe the same agent, each sub-pattern
receives the same set, containing 4 matches. The injectivity constraints, which must
be satisfied by matches of sub-patterns in figure 3.12, are represented by directed edges
between nodes in sub-patterns. Now, we begin to construct pairs from matches of the first
two columns, by connecting them through edges (green). Due to the injectivity constraint
(green), we may not connect matches that have the same index, meaning, they represent
the same instance. The match count until now would be 4 ·3= 12, instead of 4 ·4= 16,
because we had to remove a pair of matches violating the constraint. Next, we connect
matches from the third column through edges (orange), forming triplets. In order to
satisfy the constraint, no match with the same index may appear twice in a particular
triplet. The final match count amounts to 4 · 3 · 2 = 24, instead of 4 · 4 · 4 = 64. If this
pattern would contain another node, representing an agent of type A, the match count
would amount to 4 ·3 ·2 ·1= 24, with an additional node leading to a match count of 0.
Consequently, if there are more sub-patterns requiring an instance of certain type, than
there are instances of this required type, no match to the original disjunct pattern can be
found.

N =
n∏

i=1

[| X i| − f (X i)] (17)

48

Equation 17 is a modified version of equation 16, representing the previously described
match count calculation. In this equation, the match count |X i| is reduced by its con-
straint factor f (X i), which is gained through static analysis of sub-patterns, during the
setup phase. This factor represents the amount of constraints, shared by a sub-pattern
Pi and its predecessor sub-patterns Pi − 1, ..., P1, of the original pattern. For example, in
figure 3.12 the second sub-pattern P2 shares an injectivity constraint (green edge) with its
predecessor P1 and, therefore, has a factor of f (X2) = 1. Whereas, sub-pattern P1 has a
factor of zero because it is the first sub-pattern and, hence, does not have a predecessors
to share injectivity constraints with. Finally, sub-pattern P3 has a factor of f (X3) = 2
because it shares two injectivity constraints (orange edges) with its predecessors. When

A
x

B
y

A1

A2

A3

ꓯ (Ai, Aj) : i � j

-1

A
x

B
y

B1

B2

B3

A1

A2

A3

B1

B2

B3

ꓯ �Bi, Bj) : i � j

Figure 3.13: Hybrid Approach – Injectivity Constraints (2)

two sub-patterns share more than one injectivity constraint, as depicted in figure 3.13,
the match count is still only decreased by one. This stems from the fact that sub-patterns
are by design always connected. It leads to the effect that constraints, referring to any
of the nodes in the sub-pattern, remove matches that would otherwise match the rest of
the nodes in the pattern, without conflicting with their constraints. On the other hand,
multiple violations of constraints, through a match of a single sub-pattern, do not result
in the decrease of match count by the same amount. For example, the match containing
A1 connected to B1, in figure 3.13, would violate two injectivity constraints of the right
sub-pattern, under the assumption that the same match has been selected for the first
sub-pattern. Nonetheless, there are still two other combinations possible, resulting in a
combined match count of 3 ·2= 6, as opposed to 3 ·1= 3, if the sum of constraints would
have been used to determine the constraint factor f (X i).
The described procedure for determining match counts of disjunct patterns is thoroughly
tested and works reliably for patterns that have a similar structure, compared to those
presented in the example figures. Since this procedure is not formally proven, it can not
be guaranteed that it will work for every conceivable type of pattern. However, looking at
biochemistry, most patterns of this problem domain are fairly similar to those presented
here and rarely have the need for injectivity constraints. Considering this, calculating

49

match counts in the presented fashion is appropriate for the purpose of simulating bio-
chemical processes.
Using equation 17 and a set of constraint factors, the correct match count for disjunct pat-
terns can be determined through the match count of its constituent sub-patterns. With
the help of that match count, the activity of corresponding rules can be determined. In
order to apply the rule, not only is the match count to its LHS is needed, but at least
one match as well, onto which the rule can be applied. In this case, such a match does
not exist yet, because only matches to sub-patterns have been found. Therefore, a hybrid
match has to be constructed from matches of sub-patterns.

Algorithm 2 Constructing Hybrid Matches from Matches to Sub-Patterns
1: function createHybridMatchSet(mapOfMatchSets)
2: setOfMatches← ;
3: for (subPattern, matchSet) ∈mapOfMatchSets do
4: for match ∈matchSet do
5: if isNot InSet(setOfMatches, match) then
6: addToSet(setOfMatches, match)
7: break
8: return setOfMatches

Algorithm 2 shows how the set of matches, contained by a hybrid match, is constructed
in this thesis. The algorithm receives a map of match sets, as parameter. These sets
are mapped to their corresponding sub-patterns. The outer loop, in algorithm 2, goes
through each sub-pattern match set tuple in the map. The inner loop checks for each
match of the given match set, if it is not yet present within the set of matches, returned
by this function. If this is the case, the current match is added and the inner loop is
exited. Once the inner loop has finished, the outer loop inspects the next sub-pattern
match set tuple. This continues until each sub-pattern has a corresponding match in
the returned set of matches. A hybrid match, containing this set along with a map-
ping from original pattern parameters to the corresponding parameters in the constituent
sub-patterns, can then be used as a target for rule application. From the graph trans-
formation’s point of view, such a hybrid match is virtually identical to an ordinary match.

This preprocessing step should not only reduce the amount of runtime required for
matching, but also decrease the storage consumption of Rete-Networks, due to the re-
duction of the unreasonable sized match count of disjunct patterns. The effects of this
hybrid approach are presented and evaluated in the following chapter.

50

4 Results and Evaluation

The first part of this section presents simulation results produced by the framework and
shows that these are plausible. This evaluation is based upon the simulation of two
typical biochemical processes, which are introduced and analyzed in subsection 4.1. In the
subsequent subsection 4.2, runtimes and memory consumption are investigated in different
scenarios and hybrid pattern matching is compared to non-hybrid pattern matching. In
addition, it will be evaluated, how each of the used pattern matching tools cope with
disjunct patterns, which are appearing frequently in the biochemistry problem domain.
In the last subsection 4.3, the performance of the simulation framework presented this
thesis is analyzed, using a more complex example from active research. Therefore, the
runtimes, using two different pattern matching tools as well as the hybrid and the non-
hybrid approach, are compared. In addition, these runtime results are compared with
those produced by KaSim (see subsection 5.4), to get an assessment of the performance
a state-of-the-art simulation tool can achieve, in this particular problem domain.

4.1 Simulation Results

In this subsection, two different models of biochemical processes are simulated and the
obtained results are presented. It will be analyzed, if the results correspond with the
expectations that can be drawn a priori from those models. On the other hand, results
from other frameworks, which also simulated this model, are used as comparison. The
aim is to evaluate, if the simulation works according to the expectations inferred from a
model and if it delivers plausible results that are consistent with results of other established
simulation tools.

4.1.1 Simulation of the Goldbeter–Koshland Loop

The first biochemical process, modeled and simulated, is the Goldbeter–Koshland (GK)
loop [GK81], which was also used by Danos et al. [DFF+07] to demonstrate their KaSim
simulation tool. It represents a recurring mechanism that can be found in numerous
biochemical signaling pathways. The reason for using this process as an example is that
it is very compact and only posses few agent types and rules. Therefore, it is well suited
to introduce the style in which simulation results are presented.
The GK loop consists of only 3 agent types: a kinase K, a target molecule T and a
phosphatase P. A kinase can bind to a target and through that phosphorylate a site of
the target. Conversely, a phosphatase can bind to an already phosphorylated site of T, if
the site is free. A site bound to a phosphatase is then unphosphorylated again. P and K
can spontaneously detach themselves from T at any time. The exact herein used model
can be found in the Appendix A.
Figure 4.1 shows a simulation run of the described model. During this run all targets
T were observed, where both of their sites are in the phosphorylated state, regardless of
the binding state. Additionally, all Ts were observed, whose sites are phosphorylated and
unbound. The number of matches on the former pattern is represented by the red plot
in figure 4.1 and the latter pattern by the blue plot. According to the model, it is to be
expected that both the phosphatases and the kinases will initially bind to free targets.

51

Figure 4.1: Simulation Results – Goldbeter–Koshland Loop (Thesis Framework)

In the case of a kinase binding to a unphosphorylated T, it is phosphorylated. Whereas,
the binding of a phosphatase to the same T would not change the unphosphorylated
state. Initially, all agents are unbound and their sites are unphosphorylated. Therefore,

Figure 4.2: Simulation Results – Goldbeter–Koshland Loop (KaSim) [DFF+07]

due to the initially large number of unbound agents, it will lead to a rapid increase
in double phosphorylated targets. The red plot in figure 4.1 confirms this expectation.
Since the phosphatases reverse phosphorylated states of the targets, a drop of doubly
phosphorylated Ts has to occur eventually, which can also be seen in the figure. As we
can see, this process then begins to oscillate. The blue plot is oscillating at a lower level,
since it represents the population of unbound doubly phosphorylated targets. These rarely

52

occur, because phosphatases as well as kinases simultaneously compete for free sites on
targets, which are therefore rarely unoccupied.
Looking at the second figure 4.2, extracted from a paper by Danos et al. [DFF+07] and
created with KaSim, a very similar behavior can be observed. A similarly rapid increase
of the doubly phosphorylated targets, followed by a subsequent transient oscillation and
a low level of unbound targets. However, an exact match of the plots cannot be expected,
since both KaSim and this framework are based on a stochastic simulation approach and
results are, therefore, subject to statistical fluctuations. Nonetheless, both simulations
show a similar activity within 20 seconds of simulation time and have quite similar average
values of their respective pattern populations.

4.1.2 Simulation of EGF Signal Pathway

The EGF signaling pathway is another example of a process that can be simulated with the
framework of this thesis. As explained in subsection 2.1.1, this is a regulatory mechanism
for the growth of skin cells. Since this process plays a role in many control mechanisms
of the human body, it is still the subject of active research and a popular example to
demonstrate simulation frameworks. Danos et al. [DFF+07] also used the EGF pathway
to present KaSim simulation results of Kappa models. Therefore, the EGF signal path-
way will also serve as a demonstrator for the framework presented in this thesis. The full
model can be found in Appendix B.

Figure 4.3: Simulation Results – EGF (Thesis Framework)

The process itself is explained in detail in subsection 2.1.1 and basically represents a
self-regulating cascade of molecular reactions. During the simulation, population counts
of Ras, Raf, MEK and ERK molecules were observed. These molecules are especially

53

interesting because they are important for propagating the external signal, triggered by
an EGF, to the nucleus. Consequently, the ERK molecule represents the end of the signal
chain and in reality would then cause the cell nucleus to initiate growth processes.
The process begins by bonding EGFs to EGFRs, whereby the EGFRs activate adjacent
EGFRs as a result. After several intermediate steps, the site states of Ras molecules
are changed to the GTP state, becoming RasGTP molecules. Note that through EGFRs
activating their neighboring EGFRs, a single EGF may cause multiple Ras molecules to
become RasGTP molecules. As shown in figure 4.3, this causes a rapid increase in the
RasGTP population (yellow plot). Through the bonding of RasGTP molecules with Raf
molecules, an equally strong increase of Raf molecules with phosphorylated sites is caused
(green plot). Since Raf molecules phosphorylate by binding MEK molecules, their popu-
lation increases as well (blue plot). Analogously, ERK molecules are phosphorylated by
MEK molecules, which, therefore, results in a similarly strong increase in their population
(red plot). According to theory, this cascade should begin to stagnate, since all mentioned
molecules can spontaneously dephosphorylate. Additionally, RasGTP molecules can form
bonds with each other. This self-regulation can be observed very well in the simulation.
First, the rise in all molecular populations begins to stagnate. After that, a phase of os-
cillation and slight decline follows. Finally, the successive decrease of all curves, starting
with the yellow plot for RasGTP, can be observed. This continues until the complete
flattening of the red plot, representing phosphorylated ERK molecules.

Figure 4.4: Simulation Results – EGF (KaSim)

Using the same model for a simulation in KaSim, a similar behavior can be observed in
figure 4.4. In this graph, RasGTP is represented by a red plot, Raf by a green plot, MEK
by a yellow plot and ERK by a blue plot. When we compare the plots in both figures
4.3 and 4.4 with each other, similar population changes over time as well as similar peak
values can be observed. When considering the fact that these are stochastic simulations,
we can assume that both simulation frameworks essentially deliver the same results.

4.2 Evaluation of Hybrid Pattern Matching

Subsection 3.4.3 introduced disjunct patterns, a class of patterns that can cause negative
runtime behavior and high memory consumption, when used in general-purpose pattern

54

matching tools. Consequently, this problem also afflicts the simulation framework of this
thesis, which makes use of these tools. In order to avoid problems caused by these patterns,
hybrid pattern matching was introduced in subsection 4.2. For this reason, the following
subsections will analyze the effects of disjunct patterns on simulation runtime and memory
consumption. The main focus rests on investigating to what extent the hybrid pattern
matching approach can reduce the negative performance effects of disjunct patterns. In
subsection 4.2.1, simulation runtime and memory consumption is measured, while varying
the number of simulation entities. Subsection 4.2.2, on the the other hand, measures the
same metrics, while varying the number of parameters in patterns.

4.2.1 Effects of Model Size variation

This subsection examines how runtime and memory consumption behave with different
model sizes for the same pattern. Here, model size implies the number of instanced agents
of a certain type. For this purpose, the model in Listing 4.1 is used, which has two agent
types A and B and a rule with a disjunct pattern in its LHS. Thus, two unconnected
agents A and B are to be found as preconditions of the rule. 125 agents of type A and 125
agents of type B are created as initial conditions. These initial values are then doubled
for each run, up to a number of 2000 instances each. For each run, the runtime and
memory consumption during 300 iterations is measured. Due to the properties of disjunct
patterns, up to 125 · 125 = 15625 matches can be found in the first run and up to
2000 · 2000 = 4 · 106 matches can be found in the last run. The rule r1 is designed in
such a way, that the simulation activity remains at a constant high level during a single
run and at about the same level for each run, independent of model size. This was done to
prevent a simulation finishing to fast, due to its activity reaching zero early and resulting
in inactivity during each subsequent step. Since inactivity takes almost no computational
effort, simulations reaching zero activity by chance would create outliers in the set of
measurements.

Listing 4.1: Variation of Model Size – Evaluation Model
1 agent A(x , y)
2 agent B(x , y)
3
4 i n i t i 1 125 {A(x [f r e e]) , B(x [f r e e]) }
5
6 r u l e r1 {A(x [f r e e]) , B(x [f r e e]) } <−> {A(x [1]) , B(x [1]) } @ [1 , 350]
7
8 terminate i t i t e r a t i o n s =300

Figure 4.5(a) shows runtime results of the setup phase. Figure 4.5(b) shows simulation
runtimes. The series of measurements were made using the Viatra tool and the Democles
tool, each with and without using the hybrid pattern matching approach. The number of
model entities is given on the x-axis, while the runtime in seconds is given on the y-axis.
When looking at the runtimes of the setup phase in figure 4.5(a), we can see that there
is a quasi-exponential slope in the measurement series for runs without using the hybrid
approach (orange and blue plots). However, runtime measurements of simulation runs
with the hybrid approach activated (yellow and gray plots), show only a linear growth,

55

0,0

5,0

10,0

15,0

20,0

25,0

250 500 1000 2000 4000

S
E

C
O

N
D

S

SIMULATION ENTITIES

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

(a) Setup Runtimes

0,0

5,0

10,0

15,0

20,0

25,0

250 500 1000 2000 4000

S
E

C
O

N
D

S

SIMULATION ENTITIES

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

(b) Simulation Runtimes

Figure 4.5: Variation of Model Size – Runtime Measurements

under variation of the model size. The offset of the yellow and orange plots in figure 4.5(a)
and figure 4.6, representing the measurement series using the Viatra tool, comes from the
necessary conversion into the Viatra DSL. Code generation, parsing and interpretation
through the Viatra framework always requires some additional time (∼1.5 seconds), as
opposed to the Democles tool. It is also interesting to note that Viatra seems to perform
some optimizations in the background, which cause the exponential runtime growth (or-
ange plot) to be slightly lower than that of Democles (blue plot).

0,0

5,0

10,0

15,0

20,0

25,0

250 500 1000 2000 4000

S
E

C
O

N
D

S

SIMULATION ENTITIES

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

Figure 4.6: Variation of Model Size – Total Runtime

Simulation runtimes after the setup phase behave very similar, while increasing the model
size. In figure 4.5(b), the blue and orange plots that represent runtimes using Viatra and
Democles without a hybrid approach, also describe exponential slopes. However, runs
under the use of hybrid pattern matching only experience a linear increase in runtimes.
Viatra (yellow) and Democles (gray) are almost equally fast, with a slight advantage for
Democles. Total runtimes, i.e., the sum of setup phase and simulation, plotted in figure
4.6, unsurprisingly show the same behavior: Exponential increases without the hybrid
approach (orange and blue plots), linear increases with hybrid pattern matching and a
slight offset using Viatra (yellow plot).

56

These exponential increases in runtime were to be expected, since with each run, through
doubling the number of agents the number of matches quadrupled. Conversely, the hybrid
approach showed linear behavior, because only matches to sub-patterns had to be found,
which only doubled in each run. When looking at the memory consumption in figure 4.7,

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

250 500 1000 2000 4000

M
E

G
A

B
Y

T
E

SIMULATION ENTITIES

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

Figure 4.7: Variation of Model Size – Memory Usage

this reasoning is directly reflected. Instead of the runtime, used heap memory is given
in megabytes on the y-axis. The blue plot, representing Democles without the hybrid
approach grows exponentially. The reason for this is the fact that the Rete-Network has
to store the exponentially growing number of matches. Hence, the memory consumption
increases. Looking at Viatra, the plot in orange basically shows the same behavior. The
sudden sharp bend in the plot is most likely the result of an internal optimization. With
the hybrid approach, the Rete-Network does not have to store an exponentially growing
match set, only a linearly growing match set. Therefore, the storage requirement only
grows in a linear fashion, when using the hybrid approach.

4.2.2 Effects of Pattern Size variation

This subsection examines how runtime and memory consumption behave, while keeping
model size constant and varying pattern size. For this purpose, 5 different models are
used, the first model is shown in listing 4.2 and is quite similar to the model in the previous
subsection. The differences are: a smaller initial amount of agent instances, only 8 each,
and a limit of 100 iterations.

Listing 4.2: Variation of Pattern Size – Evaluation Model 1
1 agent A(x , y)
2 agent B(x , y)
3
4 i n i t i 1 8 {A(x [f r e e]) , B(x [f r e e]) }
5
6 r u l e r1 {A(x [f r e e]) , B(x [f r e e]) } <−> {A(x [1]) , B(x [1]) } @ [1 , 200]
7
8 terminate i t i t e r a t i o n s =100

57

As in the previous subsection, model size refers to the number of instanced agents of a
certain type. Pattern size describes the number of parameters in a pattern signature.
Each subsequent model has one additional parameter in the rule’s patterns, up to 6, as
can be seen in listing 4.3. In every model, all agent types are initialized with the same
number of 8 instances. All LHS rule patterns are disjunct, which produces up to 8·8= 64
matches, in case of Model 1, and up to 86 = 262144 matches, in the case of Model 5.

Listing 4.3: Variation of Pattern Size – Evaluation Model 5
1 agent A(x , y)
2 agent B(x , y)
3 agent C(x , y)
4 agent D(x , y)
5 agent F(x , y)
6 agent G(x , y)
7
8 i n i t i 1 8 {A(x [f r e e]) , B(x [f r e e]) , C(x [f r e e]) , D(x [f r e e]) , F(x [f r e e]) ,
9 G(x [f r e e]) }

10
11 r u l e r5 {A(x [f r e e]) , B(x [f r e e]) , C(x [f r e e]) , D(x [f r e e]) , F(x [f r e e]) ,
12 G(x [f r e e]) } <−> {A(x [1]) , B(x [1]) , C(x [2]) , D(x [2]) , F(x [3]) , G(x [3]) }
13 @ [1 , 600000]
14
15 terminate i t i t e r a t i o n s =100

Similar to the previous subsection, rules r1 to r5 are designed in such a way, that the
simulation activity remains at a constant high level during a single run and at about the
same level for each run, independent of model size. As in subsection 4.2.1, this was done
to make individual runs comparable and prevent outliers.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

2 3 4 5 6

S
E

C
O

N
D

S

PATTERN PARAMETER

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

(a) Setup Runtimes

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

2 3 4 5 6

S
E

C
O

N
D

S

PATTERN PARAMETER

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

(b) Simulation Runtimes

Figure 4.8: Variation of Pattern Size – Runtime Measurements

Figure 4.8(a) shows runtime results of the setup phase, whereas figure 4.8(b) shows sim-
ulation runtime measurements. Similar to the previous subsection, the series of measure-
ments were made using the Viatra tool and the Democles tool, each with and without
using the hybrid pattern matching approach. The number of pattern parameters is given
on the x-axis, while the runtime in seconds is given on the y-axis.
When looking at the runtimes of the setup phase in figure 4.8(a), we can see a simi-

58

lar behavior as in the previous subsection. Again, we can observe that there is a quasi
exponential slope in the measurement series representing runs without using the hybrid
approach (orange and blue plots). Furthermore, the runtime measurements of simulation
runs with the hybrid approach activated (yellow and gray), show a linear growth as well.
The offset of the yellow and orange plots in figure 4.8(a) and figure 4.9, representing
measurements using the Viatra tool, are caused by the necessary conversion steps into
the Viatra DSL. However, Democles without a hybrid approach (blue plot) reacts with a
steeper runtime increase than Viatra (orange plot). This could as well be a result of some
internal optimization in the Viatra framework.
In subsection 4.2.1, where the model size was varied, simulation runtimes after the setup
phase behave very similar to those in this subsection, where the pattern size was in-
creased. In figure 4.8(b) the blue and orange plots, representing the runtime, while using
Viatra and Democles without the hybrid approach, also describe exponential slopes. Fur-
thermore, Democles seems to react worse than Viatra to the increase in pattern size.
Runtimes using the hybrid approach describe a shallow linear increase. Simulations using
Viatra (yellow plot) or Democles (gray plot) are again almost equally fast, with a slight
advantage for Viatra.

0,0

5,0

10,0

15,0

20,0

25,0

2 3 4 5 6

S
E

C
O

N
D

S

PATTERN PARAMETER

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

Figure 4.9: Variation of Pattern Size – Total Runtime

Since total runtime measurements in figure 4.9 represent the sums of setup and simula-
tion runtimes, they show the same behavior as previously discussed measurements. Again,
with a slight offset added to simulation runs that were using Viatra (yellow and orange
plot).
As in the previous chapter, these exponential runtime growths were to be expected here
as well. In this case, by adding a parameter each run, the number of matches increased
eightfold each time. With the hybrid approach, the number of matches only increased
by 8, with each additional parameter, because matches for the sub-patterns could be
searched for independently of each other. Consequently, this results in an almost con-
stant, at least a very slight linear increase in runtime. When looking at the memory
consumption in figure 4.10, this reasoning is directly reflected here as well. Similar to
the previous subsection, used heap memory is given in megabytes on the y-axis. The

59

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

4500,0

5000,0

2 3 4 5 6

M
E

G
A

B
Y

T
E

PATTERN PARAMETER

Democles Viatra Democles(Hybrid) Viatra(Hybrid)

Figure 4.10: Variation of Pattern Size – Memory Usage

blue plot, representing simulation runs using Democles without hybrid approach, grows
exponentially. The observed behavior is, again, caused by the fact that the Rete-Network
has to store the exponentially growing number of matches. However, a different behav-
ior can be observed when using the hybrid approach, where the number of matches for
each partial pattern does not increase. Instead, the same amount of matches is added
for each additional sub-pattern, leading to a linear increase in memory requirements. In
fact, the actual memory consumption for simulation runs using the hybrid approach (gray
and yellow plots), behaves even better than expected. In figure 4.10, said plots indicate
that memory consumption remains virtually constant, which might be caused by internal
optimizations in the used pattern matching tools.

4.3 Runtime comparison with KaSim

In this subsection, a series of runtime measurements are performed, using the EGF sig-
nal pathway model from appendix B. The aim is to investigate, how much performance
gain can actually be achieved using the hybrid pattern matching approach in a realistic
scenario. In addition, a series of measurements is created using KaSim, which simulates
a Kappa model of the EGF signal pathway. The results will be compared to the series of
measurements that were gained using the framework presented in this thesis. This serves
the purpose of getting an indicator, how the performance of this simulation framework
compares to a state-of-the-art domain-specific simulation tool.
For this purpose, besides KaSim, runtime measurements were taken for EGF simulation
runs using Democles and Viatra, with and without the hybrid approach. For each run,
the model size was varied, meaning, that the initial conditions, as listed in appendix B,
were first scaled to 25%, then to 50%, to 75% and finally, up to 125%.
The results of these runtime measurements are shown in figure 4.11, where the relative
model size is given on the x-axis. The runtime, in seconds, is given on the y-axis, which
is scaled logarithmically. The scaling is necessary because otherwise no reasonable dis-
cussion of the results would be possible, due to the large differences in runtime.
When looking at the measurements created using Democles, we can see that for each

60

0,1

1,0

10,0

100,0

1000,0

10000,0

25% 50% 75% 100% 125%

S
E

C
O

N
D

S

RELATIVE MODEL SIZE

Viatra Democles(Hybrid) Viatra(Hybrid) KaSim

Figure 4.11: EGF Runtime Measurements

series, only a single measuring point is plotted (gray and dark blue data points). The
reason for this are the large runtimes that already occurred at 25% model size. These
runtimes would have multiplied again at 50% model size. At this size, each simulation
run was aborted after the runtime exceeded three times the runtime of a model at 25%
size. We can see that the hybrid approach (gray data point) is a bit faster than the
conventional approach using just Democles. However, if one compares this runtime with
the other measurement series, it becomes clear that there is no point in continuing to
make measurements using Democles with bigger model sizes. As it turns out, Democles
does not seem to handle larger numbers of patterns (∼120 in case of EGF) as well, as
Viatra. Additionally, when we look at some patterns of the EGF model, we can find
some examples that are quite large, i.e., they have many signature nodes which define
various link states and or site states. As indicated in the previous subsection, Democles
does not react as well to patterns with this many parameters, as Viatra. The series of
measurements created by simulation runs using Viatra without hybrid approach (orange
plot), supports the impression that Viatra is able to handle this kind of model a bit bet-
ter than Democles. This linear slope of the orange plot on a logarithmic scale, implies
an exponential increase of the runtime in a linear scale. Nonetheless, it does start at a
lower level than any measurement series created by using Democles. This performance
advantage could possibly be the result of internal optimizations in the Viatra framework
as well.
The measurement series created by simulation runs using Viatra with the hybrid approach
(yellow plot) starts at a slightly lower level, compared to the previously discussed results
and continues with an approximately logarithmic slope. This slope corresponds to a lin-
ear increase in runtime, when using a non-logarithmic scale. Although this is not like
the extreme increase in performance, as observed in subsections 4.2.1 and 4.2.2, when
using synthetic examples, it nevertheless represents a better runtime behavior than con-
ventional pattern matching approaches. About half of the patterns in the EGF model are
disjunct and would lead to an exponential runtime increase, when using just Democles or

61

Viatra. This problem was avoided with the hybrid approach, resulting in the framework
achieving a linear growth of the runtime, with linear growth of the model. Keeping this in
mind, the comparison with the measurement series created by KaSim (light blue plot), is
not as bad as it seems on the first glance. Despite being slower by a quasi constant factor
of about 200, the hybrid approach managed to perform with a linear increase in runtime,
comparable to the KaSim tool. As expected, the domain-specific tool is massively faster
because it is highly optimized. This level of performance is probably not achievable using
a general-purpose pattern matching tool.

62

5 Related Works

Rule-based simulation of biochemical processes has been a research topic for quite some
time and, therefore, spawned a variety of different approaches to the modeling and sim-
ulation of said processes. For this reason, some of the more widely used modeling and
simulation tools are presented in this section.

5.1 BioNetGen

BioNetGen (BNG) is a rule-based modeling framework for complex biochemical systems,
initially developed by Blinov et al. [BFGH04]. The BNG framework, in its current state
[HHT+16], consists of a modeling language and a collection of open-source simulation
tools. Like Kappa, the BioNetGen Language (BNGL) enables a text based concise de-
scription of large reaction networks.
Models expressed in the BNGL consist of two main components: Definitions of
biomolecules and rules that define possible interreactions between biomolecules. The
process of defining rules in BNGL is largely the same as in Kappa, where rules can be
atomic and fall in one of 5 rule categories (binding, unbinding, modification, creation and
deletion) or rules are a mixture of atomic rules (see subsection 2.2.2). The definition of
agents is slightly different on a syntactical level, but roughly the same on a conceptual
level.

Listing 5.1: BNGL – Example Block
1 begin molecule types
2 A(x , y)
3 B(z ~p ~q)
4 end molecule types

Instead of using keywords, e.g., agent, the user defines blocks in BNGL, as shown in
listing 5.1, in which all rules, agents and observables must be described. Each block is
started with a begin statement, followed by the block type, e.g., molecule types, after
which all definitions for instances of the given type follow. Every block is closed with an
end statement and its type.
The interesting aspect of the BNG framework is the fact that a model, created in the
BNGL, can be simulated using different methods. The simulation method type is a
parameter defined at the end of a BNGL model, which leads to the automatic selection
of the required tool from the BNG framework. A rule-based model, created in BNGL,
can be simulated using a stochastic method, which is based on Gillespie’s algorithm (see
subsection 2.2.1), therefore, being comparable to the technique presented in this thesis.
On the other hand, BNG provides a method to translate a rule-based model to a system of
ODEs. Hence, it is possible to simulate rule-based models using the traditional approach,
assuming biochemical reaction systems to be continuous and deterministic. The latter is
still a viable method for simulating smaller models. Once the modeled biochemical system
reaches a certain size, the creators of BNG recommend using simulation tools based on
stochastic methods.

63

5.2 RuleMonkey

RuleMonkey, developed by Colvin et al. [CMG+10], is a tool that enables the simula-
tion of rule-based models, using a method similar to Gillespie’s algorithm. In contrast
to Kappa or BioNetGen, RuleMonkey does not have its own DSL that could be used
to model biochemical systems. Instead, it is compliant to rule-based models encoded in
BNGL. Hence, any model that is created using BNGL can be simulated with RuleMon-
key. Like the algorithm used in this framework, the stochastic simulation in RuleMonkey
is a network-free approach. That means a generation of the complete reaction network
is not required, in contrast to some simulation approaches implemented in BioNetGen.
A non network-free approach needs to enumerate all possible species that can be derived
from a molecule with multiple states. Using this and the set of rules, a network is gener-
ated, which is used to track instances of these molecular species in the simulation. The
advantage of network-free approaches is that they don’t have an initial generation time
and they do not need to keep the complete reaction network in memory. The downside
is the fact that simulation steps are slower, because matches to rule preconditions have
to be found in some way.

5.3 CellDesigner

CellDesigner (CD) is a modeling tool for biochemical networks, developed by Funahashi
et al. [FMJ+08]. In contrast to Kappa and BioNetGen, in which models are described
textually, CellDesigner supports a graphical notation of biochemical processes using a
visual editor. In this case, biochemical networks, such as signal pathways, are repre-
sented by process diagrams. This representation lends itself naturally to the semantics
of biochemical reaction networks, since a biochemical reaction usually represents a state
transition of molecules.
The notation system that is used in the process diagrams is called Systems Biology
Graphical Notation (SBGN), developed by an international community. SBGN allows
the representation of diverse biological objects as well as interactions and is designed to
be semantically and visually unambiguous. Within the SBGN notation, each node repre-
sents the state of molecules and each arrow represents state transitions, among the states
of a molecule (see figure 5.1 (a)).
CellDesigner models are encoded in the Systems Biology Markup Language (SBML),
which is a tool-neutral format based on the XML standard for representing models of bio-
chemical reaction networks. In SBML, model properties are stored under certain tags, for
example, molecular species, such as protein types, are stored under the <listOfSpecies>
tag (see figure 5.1 (b)). The idea behind the introduction of SBML was to create a portable
format, capable of representing biochemical reaction network models, which can be used
in different software systems. As a consequence, the CellDesigner framework comes with
a plethora of different open source simulation tools that all use SBML encoded models.
Like the BioNetGen framework, the CellDesigner software can run ODE-based simula-
tions as well as stochastic simulations. The application itself is coded in Java, which
has the advantage of being portable and, thus, able to run on many different platforms.

64

(Crk1-Mcs2) (Cdc13/Cdc2)

(Cdc13/Cdc2)

Mcs2

Crk1

Cdc13

P

P

Cdc2

P

P

P
Cdc2

Cdc13

re2re2

(a) SBGN Example (b) SBML Example

Figure 5.1: CellDesigner – SBGN and SBML [FMJ+08]

Additionally, CD comes with a database of existing models, which can be imported and
used in simulations.

5.4 KaSim

The Kappa creators developed their own rule-based simulation tool, called KaSim
[BFKF18]. Like most rule-based methods, for example, BioNetGen’s integrated simu-
lation tool, KaSim is based on Gillespies’s algorithm (see subsection 2.2.1) and, there-
fore, performs a stochastic simulation of biochemical processes. KaSim natively supports
Kappa models, which contain the specification of the model, i.e., rules, molecular species
and initial conditions.
The state of the simulation is defined by the so called mixture, which is a collection of
instances created from molecular species, defined by the Kappa model. The mixture can
be seen as a ”soup” of molecules, representing the system at any point in time, and is
basically one big graph consisting of molecules, connected through subgraphs. During the
simulation, reactions, represented by rule applications, occur with a certain probability.
As stated in subsection 2.2.1, in order to calculate said probability the of number matches
to a rule’s LHS must be determined. In contrast to the framework presented in this thesis,
KaSim does not use a general-purpose pattern matching tool to determine the number of
matches. Instead of counting subgraphs that satisfy a rule’s LHS, KaSim maintains and
administers all embeddings from rules into the mixture graph [BFKF18].
The KaSim application has a web front end, which makes it possible to define Kappa
models and run simulations from inside a web browser.

65

6 Conclusion

The overarching goal of this thesis was to create a framework for rule-based simulation
of biochemical processes. In this type of simulation, it is mandatory to find the correct
candidates for rule applications, which model molecular reactions. For this purpose, an
important task was to integrate two different general-purpose pattern matching tools,
with the intent to evaluate the performance of the simulation framework, using both
tools in different scenarios. The final task was to compare the framework’s performance
measurements and simulation results to those achieved by the domain-specific simulation
tool KaSim.

For this purpose, the simulation framework was designed for modularity, with the aim of
being able to switch between different pattern matching tools as well as pattern matching
strategies with little effort. First, a new DSL inspired by Kappa was designed, which
is used to model biochemical processes. Such a model carries the information about the
properties of all simulation entities as well as their initial number and rules, which de-
scribe the way entities can react with each other.
The simulation was implemented according to the principle of stochastic simulation for
biochemical processes, described by Gillespie’s algorithm. In this stochastic simulation
the application probability of rules is determined using the match counts to their appli-
cation candidates. Hence, both integrated pattern matchers play an important role by
finding these required matches. However, general-purpose pattern matching tools run
into a performance problem, when disjunct patterns are used, due to exponential growth
of their match numbers. Since disjunct patterns appear frequently in biochemistry, the
hybrid approach to pattern matching was developed in this thesis. The hybrid approach
avoids exponential match growth, by splitting the disjunct patterns into their non-disjunct
sub-patterns.
Simulation results and their plausibility were discussed using two different simulation
models. Additionally, the results were compared with those from KaSim, an established
simulation tool that is actively used in research. As a result, in subsection 4.1, we came to
the conclusion that the simulation produces plausible results for both simulation models.
One reason for this conclusion was that the results coincided with expectations that could
be inferred from the models. On the other hand, the results coincided with those from
KaSim.
In order to determine how effective the hybrid approach actually is, measurements of
runtime and memory consumption during simulation runs were performed, using syn-
thetic models and varying different model parameters. As expected, during this analysis
in subsection 4.2, the exponential growth in match numbers, caused by disjunct patterns,
inevitably lead to an exponential growth in runtime and memory consumption. It became
clear how important it was to develop hybrid pattern matching, which tackles the prob-
lem of disjunct patterns, within the context of biochemistry. A remarkable increase in
performance could be observed, when using the hybrid approach. Not only did runtimes
decrease noticeably overall, but the memory consumption decreased as well. Furthermore,
the increase in memory consumption, as well as the runtime increase was limited to a lin-

67

ear growth.
Finally, simulation runtimes of the EGF signal pathway were measured, which represents
a more realistic simulation model and served as an example of a biochemical process from
active research. During this, the simulation framework was used with either Viatra or
Democles and with activated and deactivated hybrid pattern matching. The runtime
results were then compared with those of KaSim. Since the rules in the EGF signal
pathway contain some disjunct patterns, exponential runtime increases could again be
observed in simulation runs without the hybrid approach. It turned out that Viatra can
cope somewhat better with the greater number and the type of patterns found in the
EGF model, compared to Democles. The hybrid approach was consistently faster, but
in this case could not achieve the remarkable gains it had achieved using the synthetic
examples, since the EGF signal pathway does not entirely consist of disjunct patterns. It
also contains at least as many non-disjunct patterns, where the hybrid approach can not
cause any runtime improvements. The comparison with KaSim demonstrated that hy-
brid pattern matching is not the silver bullet to removing all performance deficits, which
general-purpose pattern matching tools have, compared to domain-specific tools. Such a
tool still performs better by a large margin and, thus, delivers a shorter runtime than each
of the two pattern matching tools with the activated hybrid approach. However, the up-
side is that the runtime increase, using the hybrid approach, is not exponential anymore,
but linear, which counts as a real success. In addition, general-purpose pattern matching
tools still have the advantage of higher expressiveness, which in principle grants the abil-
ity to describe much more complex patterns. This allows the simulation framework to
be extended through additional features, such as complex constraints for rule applications.

In retrospect, one reason for the performance issues of Democles can certainly be found
in the somewhat cumbersome modeling of the Reaction Container metamodel. One of
the problems might be the representation of links between sites, which is expressed by
using SimLinkState objects. In the future, this should be solved by directly using refer-
ences between sites. This would simplify patterns passed to the pattern matchers, which
would benefit not only Democles but Viatra as well. Additionally, it would not require
thousands of objects to be instantiated, just to express links between other objects. Con-
sequently, the costly deletion of these link objects, within the context of EMF, could be
avoided as well. In addition to that, using distinct object types for agents, instead of type
attributes, could potentially improve the performance of pattern matching, reducing the
size of patterns even more.
Furthermore, it would be reasonable to make more use of the expressiveness provided by
general-purpose pattern matching tools, by introducing, for example, complex constraints
for rule application. A conceivable potential future improvement, taking up on this idea,
could be the implementation of a collision detection, which, e.g., detects and prevents
collisions between agents that otherwise would have occurred, if the rule would have been
applied.
In addition, comparing this framework to other simulation tools, besides KaSim, could
potentially be interesting. Especially after implementing additional features, e.g, collision
detection, that other tools might not have.

68

As a final remark, some aspects of the implementation leave room for improvements,
with respect to performance. For example, when models in the DSL reach dimensions
comparable to those of the EGF model, syntax checking becomes quite slow. This and
other minor issues make for some simple improvements, apart from optimizing patterns
and metamodels.

In conclusion, we can say that despite some drawbacks revealed in the evaluation, this
thesis, nevertheless, produced some major achievements. A framework was implemented
that can perform a rule-based simulation of biochemical processes. A DSL has been de-
veloped to model biochemical processes. In addition, general-purpose pattern matching
tools were used, which offer great potential for extensibility of the framework, due to their
expressiveness. Finally, by developing the hybrid pattern matching approach, the prob-
lem of exponential runtime increase caused by disjunct patterns was tackled successfully,
within the context of biochemistry.

69

References

[BCP12] Bernardo, Marco ; Cortellessa, Vittorio ; Pierantonio, Alfonso: For-
mal Methods for Model-Driven Engineering. Springer-Verlag Berlin Heidel-
berg, 2012

[BCW12] Brambilla, Marco ; Cabot, Jordi ; Wimmer, Manuel: Model-Driven Soft-
ware Engineering in Practice. Morgan and Claypool, 2012

[BFGH04] Blinov, Michael L. ; Faeder, James R. ; Goldstein, Byron ; Hlavacek,
William S.: BioNetGen: software for rule-based modeling of signal transduc-
tion based on the interactions of molecular domains. In: Bioinformatics 20
(2004), Nr. 17, S. 3289–3291

[BFKF18] Boutillier, Pierre ; Feret, Jérôme ; Krivine, Jean ; Fontana, Walter ;
KappaLanguage.org (Hrsg.): The Kappa Language and Kappa Tools. v4. :
KappaLanguage.org, 2018. https://kappalanguage.org/sites/kappalanguage.
org/files/inline-files/Kappa_Manual_1.pdf

[CC79] Carpenter, Graham ; Cohen, Stanley: Epidermal Growth Factor. In:
Annual Review of Biochemistry 48 (1979), Nr. 1, S. 193–216

[CHA+18] C.Wolff, Antonio ; Hammond, M. Elizabeth H. ; Allison, Kimberly H. ;
Harvey, Brittany E. ; Mangu, Pamela B. ; Bartlett, John M. ; Bilous,
Michael ; Ellis, Ian O. ; Fitzgibbons, Patrick ; Hanna, Wedad ; Jenk-
ins, Robert B. ; Press, Michael F. ; Spears, Patricia A. ; Vance, Gail H.
; Viale, Giuseppe ; McShane, Lisa M. ; Dowsett, Mitchell: Human
Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American So-
ciety of Clinical Oncology/ College of American Pathologists Clinical Practice
Guideline Focused Update. In: Journal of Clinical Oncology (2018)

[CMG+10] Colvin, Joshua ; Monine, Michael I. ; Gutenkunst, Ryan N. ; Hlavacek,
William S. ; Hoff, Daniel D. ; Posner, Richard G.: RuleMonkey: software
for stochastic simulation of rule-based models. In: BMC Bioinformatics 11
(2010), Nr. 1, S. 404

[DFF+07] Danos, Vincent ; Feret, Jérôme ; Fontana, Walter ; Harmer, Russell ;
Krivine, Jean: Rule-Based Modelling of Cellular Signalling. In: CONCUR -
Concurrency Theory Bd. 8, Springer Berlin Heidelberg, 2007, S. 17–41

[DFF+09] Danos, Vincent ; Feret, Jérôme ; Fontana, Walter ; Harmer, Russ ;
Krivine, Jean: Rule-Based Modelling and Model Perturbation. In: Trans-
actions on Computational Systems Biology XI. Berlin, Heidelberg : Springer
Berlin Heidelberg, 2009, S. 116–137

[DFFK07] Danos, Vincent ; Feret, Jérôme ; Fontana, Walter ; Krivine, Jean: Scal-
able Simulation of Cellular Signaling Networks. In: Programming Languages
and Systems, Springer Berlin Heidelberg, 2007, S. 139–157

71

https://kappalanguage.org/sites/kappalanguage.org/files/inline-files/Kappa_Manual_1.pdf
https://kappalanguage.org/sites/kappalanguage.org/files/inline-files/Kappa_Manual_1.pdf

[DL04] Danos, Vincent ; Laneve, Cosimo: Formal molecular biology. In: Theoreti-
cal Computer Science 325 (2004), Nr. 1, S. 69–110. – Computational Systems
Biology

[EEPT06] Ehrig, Hartmut ; Ehrig, Karsten ; Prange, Ulrike ; Taentzer, Gabriele:
Fundamentals of Algebraic Graph Transformation. Springer-Verlag Berlin Hei-
delberg, 2006

[ELS+10] Engels, Gregor ; Lewerentz, Claus ; Schäfer, Wilhelm ; Schürr, Andy
; Westfechtel, Bernhard: Graph Transformations and Model-Driven En-
gineering. Springer-Verlag Berlin Heidelberg, 2010

[FMJ+08] Funahashi, Akira ; Matsuoka, Yukiko ; Jouraku, Akiya ; Morohashi,
Mineo ; Kikuchi, Norihiro ; Kitano, Hiroaki: CellDesigner 3.5: A Versatile
Modeling Tool for Biochemical Networks. In: Proceedings of the IEEE 96
(2008), Nr. 8, S. 1254–1265

[For82] Forgy, Charles L.: Rete: A Fast Algorithm for the Many Pattern / Many
Object Pattern Match Problem. (1982)

[Gil77] Gillespie, Daniel T.: Exact Stochastic Simulation of Coupled Chemical
Reactions. In: The Journal of Physical Chemistry 81 (1977), Nr. 25, S. 2340–
2361

[GK81] Goldbeter, Albert ; Koshland, Daniel E.: An Amplified Sensitivity Aris-
ing from Covalent Modification in Biological Systems. In: Proceedings of the
National Academy of Sciences 78 (1981), Nr. 11, S. 6840–6844

[HHT+16] Harris, Leonard A. ; Hogg, Justin S. ; Tapia, José-Juan ; Sekar, John
A. P. ; Gupta, Sanjana ; Korsunsky, Ilya ; Arora, Arshi ; Barua, Dipak
; Sheehan, Robert P. ; Faeder, James R.: BioNetGen 2.2: advances in
rule-based modeling. In: Bioinformatics 32 (2016), Nr. 21, S. 3366–3368

[KWB01] Kuan, C-T. ; Wikstrand, C. J. ; Bigner, D. D.: EGF mutant receptor
vIII as a molecular target in cancer therapy. In: Endocrine-related cancer 8
(2001), Nr. 2, S. 83–96

[LBS+04] Lynch, Thomas J. ; Bell, Daphne W. ; Sordella, Raffaella ; Gurubha-
gavatula, Sarada ; Brannigan, Ross A. Okimotoand Brian W. ; Harris,
Patricia L. ; Haserlat, Sara M. ; Supko, Jeffrey G. ; Haluska, Frank G.
; Louis, David N. ; Christiani, David C. ; Settleman, Jeff ; Haber,
Daniel A.: Activating Mutations in the Epidermal Growth Factor Receptor
Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. In:
The new england journal of medicine 350 (2004), Nr. 21, S. 2129–2139

[LNR+85] Libermann, Towia A. ; Nusbaum, Harris R. ; Razon, Nissim ; Kris,
Richard ; Lax, Iritt ; Soreq, Hermona ; Whittle, Nigel ; Waterfield,
Michael D. ; Ullrich, Axel ; Schlessinger, Joseph: Amplification and

72

overexpression of the EGF receptor gene in primary human glioblastomas. In:
J Cell Sci (1985), Nr. 3, S. 161–172

[LV02] Larrosa, Javier ; Valiente, Gabriel: Constraint Satisfaction Algorithms
for Graph Pattern Matching. In: Mathematical. Structures in Comp. Sci. 12
(2002), Nr. 4, S. 403–422

[MG06] Mens, Tom ; Gorp, Pieter V.: A Taxonomy of Model Transformation. In:
Electronic Notes in Theoretical Computer Science 152 (2006), S. 125–142. –
Proceedings of the International Workshop on Graph and Model Transforma-
tion (GraMoT 2005)

[Obj05] Object Management Group (Hrsg.): Meta Object Facility (MOF) Spec-
ification. v1.4.1. : Object Management Group, July 2005

[OMFK05] Oda, K. ; Matsuoka, Y. ; Funahashi, A. ; Kitano, H.: A comprehensive
pathway map of epidermal growth factor receptor signaling. In: Molecular
Systems Biology 1 (2005), S. 2005.0010

[Sch95] Schürr, Andy: Specification of graph translators with triple graph gram-
mars. In: Graph-Theoretic Concepts in Computer Science. Berlin, Heidelberg
: Springer Berlin Heidelberg, 1995, S. 151–163

[VBH+16] Varró, Dániel ; Bergmann, Gábor ; Hegedüs Ábel ; Horváth Ákos ;
Ráth, István ; Ujhelyi, Zoltán: Road to a reactive and incremental model
transformation platform: three generations of the VIATRA framework. In:
Software and System Modeling 15 (2016), Nr. 3, S. 609–629

[VD13] Varró, Gergely ; Deckwerth, Frederik: A Rete Network Construction
Algorithm for Incremental Pattern Matching. In: Theory and Practice of
Model Transformations. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013,
S. 125–140

[VSV05] Varró, Gergely ; Schürr, Andy ; Varró, Dániel: Benchmarking for graph
transformation. In: Proceedings - 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, 2005, S. 79–88

[VVS] Varró, Gergely ; Varró, Dániel ; Schürr, Andy: Incremental
Graph Pattern Matching. http://www.cs.bme.hu/~gervarro/publication/
IncrementalEngine.pdf

[VVS06] Varró, Gergely ; Varró, Dániel ; Schürr, Andy: Incremental Graph
Pattern Matching: Data Structures and Initial Experiments. In: Proceedings
of the Second International Workshop on Graph and Model Transformation
(GraMoT 2006), 2006

[Zü96] Zündorf, Albert: Graph pattern matching in PROGRES. In: Graph
Grammars and Their Application to Computer Science. Berlin, Heidelberg
: Springer Berlin Heidelberg, 1996, S. 454–468

73

http://www.cs.bme.hu/~gervarro/publication/IncrementalEngine.pdf
http://www.cs.bme.hu/~gervarro/publication/IncrementalEngine.pdf

A First Appendix - Model of the Goldbeter–Koshland Loop

The following listing shows the Goldbeter–Koshland loop, modeled as a Reaction Rule
DSL model. It was originally created by Danos et al. [DFF+07], using the Kappa lan-
guage.

Listing A.1: Reaction Rule DSL model of the Goldbeter–Koshland Loop
1 ModelID Goldbeter_Koshland
2
3 agent K(a)
4 agent P(a)
5 agent T(x{u , p} , y{u , p})
6
7 i n i t i 1 100 {K() , P() , T(x{u } [f r e e] , y{u } [f r e e]) }
8
9 r u l e KT_x {K(a [f r e e]) , T(x [f r e e]) } <−> {K(a [1]) , T(x [1]) } @ [1 , 10]

10 r u l e Tp_x {K(a [1]) , T(x{u } [1]) } −> {K(a [1]) , T(x{p } [1]) } @ [1]
11 r u l e KT_y {K(a [f r e e]) , T(y [f r e e]) } <−> {K(a [1]) , T(y [1]) } @ [1 , 10]
12 r u l e Tp_y {K(a [1]) , T(y{u } [1]) } −> {K(a [1]) , T(y{p } [1]) } @ [1]
13
14 r u l e PT_x {P(a [f r e e]) , T(x [f r e e]) } <−> {P(a [1]) , T(x [1]) } @ [1 , 10]
15 r u l e Tu_x {P(a [1]) , T(x{p } [1]) } −> {P(a [1]) , T(x{u } [1]) } @ [1]
16 r u l e PT_y {P(a [f r e e]) , T(y [f r e e]) } <−> {P(a [1]) , T(y [1]) } @ [1 , 10]
17 r u l e Tu_y {P(a [1]) , T(y{p } [1]) } −> {P(a [1]) , T(y{u } [1]) } @ [1]
18
19 obs T_pp {T(x{p } [?] , y{p } [?]) }
20 obs T_pp_unbound {T(x{p } [f r e e] , y{p } [f r e e]) }
21
22 terminate t1 time=20000

B Second Appendix - Model of the EGF Signal Pathway

The following listing shows the EGF signal pathway, modeled as a Reaction Rule DSL
model. It was originally created by Danos et al. [DFF+07], using the Kappa language.
As a remark, like in the original model, all rule activities are set to 1.

Listing B.1: Reaction Rule DSL model of the EGF Signal Pathway
1 ModelID EGF_Pathway
2
3 agent EGF(r {ext , i n t })
4 agent EGFR(L{ext , i n t } , CR, Y992{u , p} , Y1068{u , p} , Y1148{u , p})
5 agent RasGap(SH2 , s)
6 agent Grb2 (SH2 , SH3)
7 agent SoS (a , b , SS{u , p})
8 agent Shc (PTB, Y318{u , p})
9 agent Ras (S1S2{gdp , gtp })

10 agent Raf (x{u , p})
11 agent PP2A1(s)
12 agent MEK(s , S218{u , p} , S222{u , p})
13 agent PP2A2(s)
14 agent ERK(s , T185{u , p} , Y187{u , p})

75

15 agent MKP3(s)
16
17 // Act ivat ing r e c ep to r dimers
18 // #1 e x t e r n a l dimers :
19 r u l e EGF_EGFR {EGF(r { ext } [f r e e]) , EGFR(L{ ext } [f r e e] , CR[f r e e]) } <−>
20 {EGF(r { ext } [1]) , EGFR(L{ ext } [1] , CR[f r e e]) } @ [1 , 1]
21
22 r u l e EGFR_EGFR {EGFR(L{ ext } [bound] , CR[f r e e]) , EGFR(L{ ext } [bound] ,
23 CR[f r e e]) } <−> {EGFR(L{ ext } [bound] , CR[1]) , EGFR(L{ ext } [bound] ,
24 CR[1]) } @ [1 , 1]
25
26 // #2 s i m p l i f i e d phosphory lat ion (i n t e r n a l or e x t e r n a l)
27 r u l e EGFR_at_992 {EGFR(CR[bound] , Y992{u } [f r e e]) } −>
28 {EGFR(CR[bound] , Y992{p } [f r e e]) } @ [1]
29
30 r u l e EGFR_at_1068 {EGFR(CR[bound] , Y1068{u } [f r e e]) } −>
31 {EGFR(CR[bound] , Y1068{p } [f r e e]) } @ [1]
32
33 r u l e EGFR_at_1148 {EGFR(CR[bound] , Y1148{u } [f r e e]) } −>
34 {EGFR(CR[bound] , Y1148{p } [f r e e]) } @ [1]
35
36 // #3 s i m p l i f i e d dephosphory lat ion (i n t e r n a l or e x t e r n a l)
37 r u l e _992_op {EGFR(Y992{p } [f r e e]) } −> {EGFR(Y992{u } [f r e e]) } @ [1]
38 r u l e _1068_op {EGFR(Y1068{p } [f r e e]) } −> {EGFR(Y1068{u } [f r e e]) } @ [1]
39 r u l e _1148_op {EGFR(Y1148{p } [f r e e]) } −> {EGFR(Y1148{u } [f r e e]) } @ [1]
40
41 // I n t e r n a l i z a t i o n , degradat ion and r e c y c l i n g
42 // #i n t e r n a l i z a t i o n :
43 r u l e int_monomer {EGF(r { ext } [1]) , EGFR(L{ ext } [1] , CR[f r e e]) } −>
44 {EGF(r { i n t } [1]) , EGFR(L{ i n t } [1] , CR[f r e e]) } @ [0 . 0 2]
45
46 r u l e int_dimer {EGF(r { ext } [1]) , EGFR(L{ ext } [1] , CR[2]) ,
47 EGF(r { ext } [3]) , EGFR(L{ ext } [3] , CR[2]) } −> {EGF(r { i n t } [1]) ,
48 EGFR(L{ i n t } [1] , CR[2]) , EGF(r { i n t } [3]) , EGFR(L{ i n t } [3] , CR[2]) } @ [0 . 0 2]
49
50 // #d i s s o c i a t i o n :
51 r u l e EGFR_EGFR_op {EGFR(L{ i n t } [bound] , CR[1]) , EGFR(L{ i n t } [bound] ,
52 CR[1]) } −> {EGFR(L{ i n t } [bound] , CR[f r e e]) , EGFR(L{ i n t } [bound] ,
53 CR[f r e e]) } @ [1]
54
55 r u l e EGF_EGFR_op {EGF(r { i n t } [1]) , EGFR(L{ i n t } [1] , CR[f r e e]) } −>
56 {EGF(r { i n t } [f r e e]) , EGFR(L{ i n t } [f r e e] , CR[f r e e]) } @ [1]
57
58 // #degradat ion :
59 r u l e deg_EGF {EGF(r { i n t } [f r e e]) } −> { void } @ [1]
60 r u l e deg_EGFR {EGFR(L{ i n t } [f r e e] , CR[f r e e]) } −> { void } @ [1]
61
62 // #r e c y c l i n g :
63 r u l e rec_EGFR {EGFR(L{ i n t } [f r e e] , Y992{u } [f r e e] , Y1068{u } [f r e e] ,
64 Y1148{u } [f r e e]) } −> {EGFR(L{ ext } [f r e e] , Y992{u } [f r e e] , Y1068{u } [f r e e] ,
65 Y1148{u } [f r e e]) } @ [1]
66
67 // SoS and RasGAP recru i tment

76

68 r u l e EGFR_RasGAP {EGFR(Y992{p } [f r e e]) , RasGap(SH2 [f r e e]) } <−>
69 {EGFR(Y992{p } [1]) , RasGap(SH2 [1]) } @ [1 , 1]
70
71 r u l e EGFR_Grb2 {EGFR(Y1068{p } [f r e e]) , Grb2 (SH2 [f r e e]) } <−>
72 {EGFR(Y1068{p } [1]) , Grb2 (SH2 [1]) } @ [1 , 1]
73
74 r u l e Grb2_SoS {Grb2 (SH3 [f r e e]) , SoS (a [f r e e] , SS{u } [f r e e]) } −>
75 {Grb2 (SH3 [1]) , SoS (a [1] , SS{u } [f r e e]) } @ [1]
76
77 r u l e Grb2_SoS_op {Grb2 (SH3 [1]) , SoS (a [1]) } −>
78 {Grb2 (SH3 [f r e e]) , SoS (a [f r e e]) } @ [1]
79
80 r u l e EGFR_Shc {EGFR(Y1148{p } [f r e e]) , Shc (PTB[f r e e]) } <−>
81 {EGFR(Y1148{p } [1]) , Shc (PTB[1]) } @ [1 , 1]
82
83 r u l e Shc_Grb2 {Shc (Y318{p } [f r e e]) , Grb2 (SH2 [f r e e]) } <−>
84 {Shc (Y318{p } [1]) , Grb2 (SH2 [1]) } @ [1 , 1]
85
86 r u l e Shc_at_318 {EGFR(CR[bound] , Y1148{p } [1]) , Shc (PTB[1] ,
87 Y318{u } [f r e e]) } −> {EGFR(CR[bound] , Y1148{p } [1]) , Shc (PTB[1] ,
88 Y318{p } [f r e e]) } @ [1]
89
90 r u l e Shc_at_318_op {Shc (Y318{p } [f r e e]) } −> {Shc (Y318{u } [f r e e]) } @ [1]
91
92 // Act ivat ing Ras
93 // #a c t i v a t e :
94 r u l e long_arm_SoS_Ras {EGFR(Y1148{p } [1]) , Shc (PTB[1] , Y318{p } [2]) ,
95 Grb2 (SH2 [2] , SH3 [3]) , SoS (a [3] , b [f r e e]) , Ras (S1S2{gdp } [f r e e]) } −>
96 {EGFR(Y1148{p } [1]) , Shc (PTB[1] , Y318{p } [2]) , Grb2 (SH2 [2] , SH3 [3]) ,
97 SoS (a [3] , b [4]) , Ras (S1S2{gdp } [4]) } @ [1]
98
99 r u l e short_arm_SoS_Ras {EGFR(Y1068{p } [1]) , Grb2 (SH2 [1] , SH3 [2]) ,

100 SoS (a [2] , b [f r e e]) , Ras (S1S2{gdp } [f r e e]) } −> {EGFR(Y1068{p } [1]) ,
101 Grb2 (SH2 [1] , SH3 [2]) , SoS (a [2] , b [3]) , Ras (S1S2{gdp } [3]) } @ [1]
102
103 r u l e Ras_GTP {SoS (b [1]) , Ras (S1S2{gdp } [1]) } −>
104 {SoS (b [1]) , Ras (S1S2{gtp } [1]) } @ [1]
105
106 r u l e SoS_Ras_op {SoS (b [1]) , Ras (S1S2 [1]) } −>
107 {SoS (b [f r e e]) , Ras (S1S2 [f r e e]) } @ [1]
108
109 // #deac t i va t e :
110 r u l e direct_RasGap_Ras {EGFR(Y992{p } [1]) , RasGap(SH2 [1] , s [f r e e]) ,
111 Ras (S1S2{gtp } [f r e e]) } −> {EGFR(Y992{p } [1]) , RasGap(SH2 [1] , s [2]) ,
112 Ras (S1S2{gtp } [2]) } @ [1]
113
114 r u l e Ras_GDP {RasGap(s [1]) , Ras (S1S2{gtp } [1]) } −>
115 {RasGap(s [1]) , Ras (S1S2{gdp } [1]) } @ [1]
116
117 r u l e RasGAP_Ras_op {RasGap(s [1]) , Ras (S1S2 [1]) } −>
118 {RasGap(s [f r e e]) , Ras (S1S2 [f r e e]) } @ [1]
119
120 r u l e intrinsic_Ras_GDP {Ras (S1S2{gtp } [f r e e]) } −>

77

121 {Ras (S1S2{gdp } [f r e e]) } @ [1]
122
123 // Act ivat ing Raf
124 // #a c t i v a t i o n :
125 var p_Raf = {Ras (S1S2{gtp } [1]) , Raf (x{u } [1]) }
126 r u l e Ras_Raf {Ras (S1S2{gtp } [f r e e]) , Raf (x{u } [f r e e]) } −> p_Raf @ [1]
127 r u l e Raf p_Raf −> {Ras (S1S2{gtp } [1]) , Raf (x{p } [1]) } @ [1]
128 r u l e Ras_Raf_op {Ras (S1S2{gtp } [1]) , Raf (x [1]) } −>
129 {Ras (S1S2{gtp } [f r e e]) , Raf (x [f r e e]) } @ [1]
130
131 // #d e a c t i v a t i o n
132 var p_Raf2 = {PP2A1(s [1]) , Raf (x{p } [1]) }
133 r u l e PP2A1_Raf {PP2A1(s [f r e e]) , Raf (x{p } [f r e e]) } −> p_Raf2 @ [1]
134 r u l e Raf_op p_Raf2 −> {PP2A1(s [1]) , Raf (x{u } [1]) } @ [1]
135 r u l e PP2A1_Raf_op {PP2A1(s [1]) , Raf (x [1]) } −>
136 {PP2A1(s [f r e e]) , Raf (x [f r e e]) } @ [1]
137
138 // Act ivat ing MEK
139 // #a c t i v a t i o n :
140 var p_MEK = {Raf (x{p } [1]) , MEK(S222{u } [1]) }
141 r u l e Raf_MEK_at_222 {Raf (x{p } [f r e e]) , MEK(S222{u } [f r e e]) } −>
142 p_MEK @ [1]
143
144 r u l e MEK_at_222 p_MEK −> {Raf (x{p } [1]) , MEK(S222{p } [1]) } @ [1]
145 r u l e Raf_MEK_at_222_op {Raf (x{p } [1]) , MEK(S222 [1]) } −>
146 {Raf (x{p } [f r e e]) , MEK(S222 [f r e e]) } @ [1]
147
148 var p_MEK2 = {Raf (x{p } [1]) , MEK(S218{u } [1]) }
149 r u l e Raf_MEK_at_218 {Raf (x{p } [f r e e]) , MEK(S218{u } [f r e e]) } −>
150 p_MEK2 @ [1]
151
152 r u l e MEK_at_218 p_MEK2 −> {Raf (x{p } [1]) , MEK(S218{p } [1]) } @ [1]
153 r u l e Raf_MEK_at_218_op {Raf (x{p } [1]) , MEK(S218 [1]) } −>
154 {Raf (x{p } [f r e e]) , MEK(S218 [f r e e]) } @ [1]
155
156 // #d e a c t i v a t i o n :
157 var p_MEK3 = {PP2A2(s [1]) , MEK(S222{p } [1]) }
158 r u l e PP2A2_MEK_at_222 {PP2A2(s [f r e e]) , MEK(S222{p } [f r e e]) } −>
159 p_MEK3 @ [1]
160
161 r u l e MEK_at_222_op p_MEK3 −> {PP2A2(s [1]) , MEK(S222{u } [1]) } @ [1]
162 r u l e PP2A2_MEK_at_222_op {PP2A2(s [1]) , MEK(S222 [1]) } −>
163 {PP2A2(s [f r e e]) , MEK(S222 [f r e e]) } @ [1]
164
165 var p_MEK4 = {PP2A2(s [1]) , MEK(S218{p } [1]) }
166 r u l e PP2A2_MEK_at_218 {PP2A2(s [f r e e]) , MEK(S218{p } [f r e e]) } −>
167 p_MEK4 @ [1]
168
169 r u l e MEK_at_218_op p_MEK4 −> {PP2A2(s [1]) , MEK(S218{u } [1]) } @ [1]
170 r u l e PP2A2_MEK_at_218_op {PP2A2(s [1]) , MEK(S218 [1]) } −>
171 {PP2A2(s [f r e e]) , MEK(S218 [f r e e]) } @ [1]
172
173 // Act ivat ing ERK

78

174 // #a c t i v a t i o n :
175 var p_ERK = {MEK(s [1] , S218{p } [f r e e] , S222{p } [f r e e]) , ERK(T185{u } [1]) }
176 r u l e MEK_ERK_at_185 {MEK(s [f r e e] , S218{p } [f r e e] , S222{p } [f r e e]) ,
177 ERK(T185{u } [f r e e]) } −> p_ERK @ [1]
178
179 r u l e ERK_at_185 p_ERK −> {MEK(s [1] , S218{p } [f r e e] , S222{p } [f r e e]) ,
180 ERK(T185{p } [1]) } @ [1]
181
182 r u l e MEK_ERK_at_185_op {MEK(s [1]) , ERK(T185 [1]) } −> {MEK(s [f r e e]) ,
183 ERK(T185 [f r e e]) } @ [1]
184
185 var p_ERK2 = {MEK(s [1] , S218{p } [f r e e] , S222{p } [f r e e]) , ERK(Y187{u } [1]) }
186 r u l e MEK_ERK_at_187 {MEK(s [f r e e] , S218{p } [f r e e] , S222{p } [f r e e]) ,
187 ERK(Y187{u } [f r e e]) } −> p_ERK2 @ [1]
188
189 r u l e ERK_at_187 p_ERK2 −> {MEK(s [1] , S218{p } [f r e e] , S222{p } [f r e e]) ,
190 ERK(Y187{p } [1]) } @ [1]
191
192 r u l e MEK_ERK_at_187_op {MEK(s [1]) , ERK(Y187 [1]) } −> {MEK(s [f r e e]) ,
193 ERK(Y187 [f r e e]) } @ [1]
194
195 // #d e a c t i v a t i o n
196 var p_ERK3 = {MKP3(s [1]) , ERK(T185{p } [1]) }
197 r u l e MKP_ERK_at_185 {MKP3(s [f r e e]) , ERK(T185{p } [f r e e]) } −> p_ERK3 @ [1]
198 r u l e ERK_at_185_op p_ERK3 −> {MKP3(s [1]) , ERK(T185{u } [1]) } @ [1]
199 r u l e MKP_ERK_at_185_op {MKP3(s [1]) , ERK(T185 [1]) } −> {MKP3(s [f r e e]) ,
200 ERK(T185 [f r e e]) } @ [1]
201
202 var p_ERK4 = {MKP3(s [1]) , ERK(Y187{p } [1]) }
203 r u l e MKP_ERK_at_187 {MKP3(s [f r e e]) , ERK(Y187{p } [f r e e]) } −> p_ERK4 @ [1]
204 r u l e ERK_at_187_op p_ERK4 −> {MKP3(s [1]) , ERK(Y187{u } [1]) } @ [1]
205 r u l e MKP_ERK_at_187_op {MKP3(s [1]) , ERK(Y187 [1]) } −> {MKP3(s [f r e e]) ,
206 ERK(Y187 [f r e e]) } @ [1]
207
208 // Deact ivat ing SoS
209 r u l e SoS_ERK {SoS (SS{u } [f r e e]) , ERK(s [f r e e] , T185{p } [f r e e] ,
210 Y187{p } [f r e e]) } −> {SoS (SS{u } [1]) , ERK(s [1] , T185{p } [f r e e] ,
211 Y187{p } [f r e e]) } @ [1]
212
213 r u l e SoS_ERK_op {SoS (SS [1]) , ERK(s [1]) } −> {SoS (SS [f r e e]) ,
214 ERK(s [f r e e]) } @ [1]
215
216 // #feedback c r e a t i o n
217 r u l e SoS_at_SS {SoS (SS{u } [1]) , ERK(s [1] , T185{p } [f r e e] ,
218 Y187{p } [f r e e]) } −> {SoS (SS{p } [1]) , ERK(s [1] , T185{p } [f r e e] ,
219 Y187{p } [f r e e]) } @ [1]
220
221 // #feedback recovery
222 r u l e SoS_at_SS_op {SoS (SS{p } [f r e e]) } −> {SoS (SS{u } [f r e e]) } @ [1]
223
224 // I n i t i a l i z a t i o n
225 i n i t i_EGF 10 {EGF(r { ext } [f r e e]) }
226 i n i t i_EGFR 100 {EGFR(L{ ext } [f r e e] , CR[f r e e] , Y992{u } [f r e e] ,

79

227 Y1068{u } [f r e e] , Y1148{u } [f r e e]) }
228
229 i n i t i_Shc 100 {Shc (PTB[f r e e] , Y318{u } [f r e e]) }
230 i n i t i_Grb_SoS 100 {Grb2 (SH2 [f r e e] , SH3 [1]) ,
231 SoS (a [1] , b [f r e e] , SS{u } [f r e e]) }
232
233 i n i t i_RasGap 200 {RasGap(SH2 [f r e e] , s [f r e e]) }
234 i n i t i_Ras 100 {Ras (S1S2{gdp } [f r e e]) }
235 i n i t i_Raf 100 {Raf (x{u } [f r e e]) }
236 i n i t i_PP2A1 25 {PP2A1(s [f r e e]) }
237 i n i t i_PP2A2 50 {PP2A2(s [f r e e]) }
238 i n i t i_MEK 200 {MEK(s [f r e e] , S222{u } [f r e e] , S218{u } [f r e e]) }
239 i n i t i_ERK 200 {ERK(s [f r e e] , T185{u } [f r e e] , Y187{u } [f r e e]) }
240 i n i t i_MKP3 50 {MKP3(s [f r e e]) }
241
242 // Observables
243 obs ERK_pp {ERK(Y187{p } [?] , T185{p } [?]) }
244 obs MEK_pp {MEK(S222{p } [?] , S218{p } [?]) }
245 obs Raf_p {Raf (x{p } [?]) }
246 obs Ras_gtp {Ras (S1S2{gtp } [?]) }
247
248 // Terminates
249 terminate t_it time =300000

80

	Introduction
	Goals of the Thesis
	Thesis Structure

	Theoretical Background
	Biochemical Reactions
	EGF Signal Pathway

	Rule-based Modeling in Biochemistry
	Stochastic Simulation
	Kappa

	Model-Driven Software Engineering
	Modeling and Metamodeling
	Model Transformations
	Pattern Matching

	Implementation
	Overview
	Reaction Rules DSL
	Simulation
	Reaction Container Model
	Simulation Setup
	Simulation Execution

	Pattern Matching
	Viatra Patterns
	Democles Patterns
	Disjunct Sub-Patterns
	Hybrid Pattern Matching

	Results and Evaluation
	Simulation Results
	Simulation of the Goldbeter–Koshland Loop
	Simulation of EGF Signal Pathway

	Evaluation of Hybrid Pattern Matching
	Effects of Model Size variation
	Effects of Pattern Size variation

	Runtime comparison with KaSim

	Related Works
	BioNetGen
	RuleMonkey
	CellDesigner
	KaSim

	Conclusion
	First Appendix - Model of the Goldbeter–Koshland Loop
	Second Appendix - Model of the EGF Signal Pathway

