4. Übung zur Vorlesung Software-Produktlinien

Aufgabe 1 Sample-based SPL Testing

Gegeben sei das Feature-Modell in Abbildung 1.

- Ermitteln Sie alle validen kombinatorischen Feature-Paare.
- Erfüllt das folgende Sample Pairwise Combinatorial Feature-Coverage?

	VM	€	\$	Ca	Со
p1	1	1	0	0	0
p2	1	1	0	0	1
р3	1	1	0	1	1
$\overline{p4}$	1	0	1	0	1

Falls nicht, fügen Sie weitere Konfigurationen ein, sodass alle Paare abgedeckt sind.

- Wie muss das Sample angepasst werden, wenn ein weiteres Core-Feature in das Feature-Modell eingefügt wird?
- Geben Sie ein Feature-Modell mit 4 Features (zuzüglich Wurzel-Feature) an, das möglichst viele valide kombinatorische Paare aufweist.

Aufgabe 2 Family-based SPL Testing

Aufgabe 2.1 Modellbasierte SPL Test Suite Generierung

Gegeben sei das annotierte State Machine SPL Testmodell und das zugehörige Feature-Modell in Abbildung 2.

- a) Gegeben seien folgende Testfälle:
 - tc1 = t1-t5
 - tc2 = t2-t6
 - tc3 = t3-t5
 - tc4 = t4-t6

Ermitteln Sie die Presence Conditions für diese Testfälle.

- b) Ergeben die Testfälle eine valide SPL Test Suite? Falls nicht, korrigieren Sie die Test Suite entsprechend.
- c) Ergeben die Testfälle eine vollständige SPL Test Suite? Falls nicht, fügen Sie weitere Testfälle hinzu, bis die Test Suite vollständig ist.

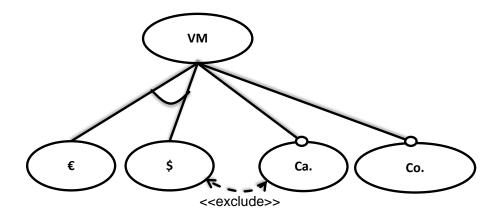


Abbildung 1: Feature-Modell für eine Vending Machine SPL

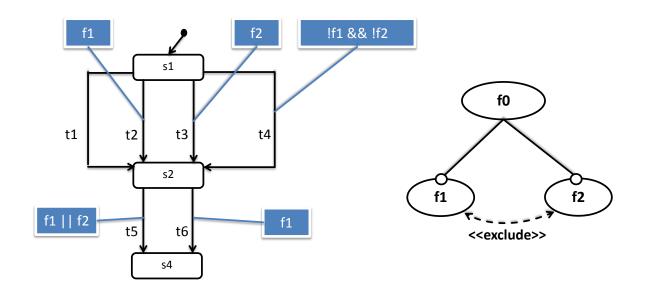


Abbildung 2: SPL Testmodell

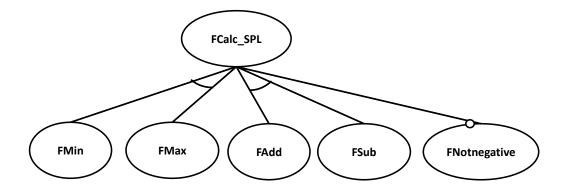


Abbildung 3: Feature Modell

Aufgabe 2.2 White-box SPL Test Suite Generierung

Gegeben sei die folgende SPL-Implementierung mit dem dazugehörigen Feature Modell aus Abb. 3.

```
1:
    int calc(int x, int y, int z) {
2:
      int a;
      if(x //#if FMin < //#elif FMax > //#endif y) {
3:
4:
        a = x;
5:
      }
6:
      else {
7:
        a = y;
8:
      }
9:
      int b = 0;
10:
      //#if FAdd
      b = z+a;
11:
12:
      //#elif FSub
13:
      b = z-a;
      //#endif
14:
15:
      //#if FNotnegative
      if (b < 0) b = -b;
16:
17:
      //#endif
18:
      return b;
19: }
```

- a) Erstellen Sie den zugehörigen Kontrollflussgraphen, der nach Variability Encoding entsteht.
- b) Gegeben sei das folgende Testziel:
 - Zeile 4 (a=x;)

Leiten Sie eine vollständige SPL Test Suite für dieses Testziel aus dem Kontrollflussgraphen ab.