
© Copyright Malina Software

Model-Based Engineering
of Real-Time and
Embedded Systems

Bran Selic
Malina Software Corp., Canada

Adjunct Prof., U. Of Toronto and Carleton U., Canada

selic@acm.org

© Copyright Malina Software2

Overview

 On Model-Based Software Engineering

 Applying MBSE to Real-Time/Embedded Systems

 The Principal Research Challenges of MBSE

© Copyright Malina Software3

The Tandem Switches Tango…

 1990: AT&T Long Distance Network (Northeastern
US)

CO

....

CO

. . .

CO

...

tandem

tandem
tandem

tandem

tandem

tandem

tandem

tandem

tandem
tandem

tandem

tandemtandem

tandem

Recovery time:

1 day

Cost: 100’s of

millions of

$’s

© Copyright Malina Software4

The Culprit

 The (missing) ―break‖ that
broke it

. . .;

switch (...) {

case a : ...;

break;

case b :...;

break;

. . .

case m : ...;

case n : ...;

. . .

};
Aaargh! Forgot
the ―break‖…

Wanted:

$1 billion

reward

…and, it’s all HIS fault!

© Copyright Malina Software5

The Enemy: Complexity

 Modern real-time software systems are very
complex and getting more so

 Complex behavior and structure

 Increasing demands for greater dependability (availability,
reliability, performance, etc.)

 …while, at the same time, our current software projects
success rate is dismal? (< 50%)

 Complexity: Essential vs Accidental

 Thesis: Far too much of this complexity is
accidental and a consequence of inappropriate
implementation technologies methods

 i.e., complexity that is due to our technologies and methods

© Copyright Malina Software6

The Impact

 Abstraction of software is extremely difficult and
risky

 Any detail can be critical!

 Eliminates our most effective means for managing
complexity

 Our ability to exploit formal mathematical methods
is severely limited

 Mathematics is at the core of all successful modern
engineering

© Copyright Malina Software7

A Fragment of Modern Software…

SC_MODULE(prod)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 = i ; //to invoke slave;}

}

SC_CTOR(prod)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(con)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

SC_CTOR(con)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

prod *A1;

con *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new prod(“A1”);

A1.out1(link1);

B1 = new con(“B1”);

B1.in1(link1);}};

Do you see the
architecture of this
system?

© Copyright Malina Software8

…and Its UML 2 Model

«sc_slave»

consumer

«sc_method»

producer
start out1 in1

Can you see it
now?

© Copyright Malina Software9

The Program and Its Model

«sc_slave»

:consumer
«sc_method»

:producer
start out1 in1

«sc_link_mp»

link1

SC_MODULE(prod)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(prod)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(con)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

}

SC_CTOR(con)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

prod *A1;

con *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new prod(“A1”);

A1.out1(link1);

B1 = new con(“B1”);

B1.in1(link1);}};

© Copyright Malina Software10

Model-Based Software Engineering (MBSE)

 An approach to software development in which
software models play an indispensable role

 Based on two time-proven ideas:

switch (state) {

case„1:action1;

newState(„2‟);

break;

case„2:action2;

newState(„3‟);

break;

case‟3:action3;

newState(„1‟);

break;}

(2) AUTOMATION

S1

S3

S2

e1/action1

e2/action2

e3/action3

switch (state) {

case„1:action1;

newState(„2‟);

break;

case„2:action2;

newState(„3‟);

break;

case‟3:action3;

newState(„1‟);

break;}

(1) ABSTRACTION

S1

S3

S2

e1/action1

e2/action2

e3/action3

Realm of
modeling
languages

Realm of
tools

© Copyright Malina Software11

Why Build Models?
1. To understand

the interesting characteristics of an existing or intended system

2. To communicate

 understanding and design intent

3. To predict

 the characteristics of interest (by analysing models)

© Copyright Malina Software12

Engineering Models
 Engineering model:

A reduced representation of some system or process, which
emphasizes properties that are of interest to a given set of
concerns

• We don’t see everything
at once

• What we do see is adjusted
to the model’s purpose and
to human understanding

What about models of
software systems?

© Copyright Malina Software13

What About Models of Software?

―…bubbles and arrows, as opposed to programs,
…never crash‖

-- B. Meyer
―UML: The Positive Spin‖

American Programmer, 1997

Monitor
PH

Raise
PH

Control
PH

PH reached X

Current PH

start

stop

Input valve
control

© Copyright Malina Software14

Key Characteristics of Useful Models

 Clear purpose

 Known audience, perspective (viewpoints), and expected value

 Minimal (abstract)

 Emphasizes what is relevant while removing/hiding what is not

 Understandable

 Expressed in a form that is readily understood by its audience

 Accurate

 Faithfully represents relevant aspects of the modeled system

 Predictive

 Can help answer key questions about the modeled system

 Cost-effective

 Much cheaper and faster to construct than actual system

© Copyright Malina Software15

What’s a Software Model?

 Software model: An engineering model (specified
using a modeling language) of some software that
represents:

1. The run-time view of the software: the structure and
behavior of the software in execution and/or

2. The design-time view of the software: The structure and
content of the software specification

B

A B
0..*

C

0..1
0..*

«import»

0..*

Left Right

m1

m4

m2

m3

One of the primary motives for many
modeling languages is the need to more
clearly represent software in execution

Design-time view

Run-time view

© Copyright Malina Software16

On Modeling Languages

 The next phase of development in computer
languages…

Application

specific

Computing

technology

specific

Assemblers,
machine
languages

Classical (3G)
programming
languages

Modeling
languages

Implementation

level

Compiler
filled detail

Can we do
the same
here ?

Degree of
(technology)
abstraction

© Copyright Malina Software17

Categories of Modeling Languages

 Classical informal Design/Analysis/Documentation
(DAD) modeling languages

 Informal documentation-oriented languages

 Have been used for decades and proven effective

 However, they bring nothing new that will lead us to
quantum leaps in productivity and quality

 Executable modeling languages

 Based on precise (possibly formal) semantics

 Value-add: Early and direct evaluation of design choices

 Value-add: Potential for computer-based verification

 Value-add: Potential for spanning the full development cycle
from architectural design through implementation languages

© Copyright Malina Software18

refine

NotStarted

Started

start

producer

Modeling with Executable Languages

 Models can be refined and verified continuously until
the model becomes the system that it was modeling!

«sc_method»

producer
start out1

NotStarted

Started

start

producer

St1 St2

out : Message;

out = msg.data;

portP.send (msg);

/generate_data()

Early architecture model More refined model

© Copyright Malina Software19

A Unique Feature of Software

 A software model and the software being modeled
share the same medium—the computer

Software has the unique property that it
allows us to directly evolve models into
implementations without fundamental
discontinuities in the expertise, tools, or
methods!

 High probability that key design
decisions will be preserved in the
implementation and that the results of
prior analyses will be valid

© Copyright Malina Software21

MBSE: State of the Practice

 Example: Major Telecom Equipment Vendor

 Adopted MBSE Tooling

 Used commercial MBSE tools: Rose RealTime (with fully
automated code generation), Test RealTime, RUP

 Product : Network Controller

 7.5 Million lines of auto-generated C++ code

 400+ developers working on a single UML model

 Performance (throughput, memory):

 Within ± 15% of hand-crafted code

 Productivity improvements

 80% fewer bugs

 Estimated productivity improvement = factor of 4

 There are many similar examples…

© Copyright Malina Software22

Automated doors, Base Station, Billing (In Telephone Switches),
Broadband Access, Gateway, Camera, Car Audio, Convertible roof
controller, Control Systems, DSL, Elevators, Embedded Control, GPS,
Engine Monitoring, Entertainment, Fault Management, Military
Data/Voice Communications, Missile Systems, Executable Architecture
(Simulation), DNA Sequencing, Industrial Laser Control, Karaoke,
Media Gateway, Modeling Of Software Architectures, Medical
Devices, Military And Aerospace, Mobile Phone (GSM/3G), Modem,
Automated Concrete Mixing Factory, Private Branch Exchange (PBX),
Operations And Maintenance, Optical Switching, Industrial Robot,
Phone, Radio Network Controller, Routing, Operational Logic, Security
and fire monitoring systems, Surgical Robot, Surveillance Systems,
Testing And Instrumentation Equipment, Train Control, Train to
Signal box Communications, Voice Over IP, Wafer Processing,
Wireless Phone

Sampling of Successful MBSE Products

© Copyright Malina Software23

Overview

 On Model-Based Software Engineering

 Applying MBSE to Real-Time/Embedded Systems

 The Principal Research Challenges of MBSE

© Copyright Malina Software24

Real-Time and Embedded Systems

 Systems whose software interacts with the physical
world in a timely fashion

 Particularly challenging: Must contend with the full
complexity and unpredictability of the physical world

 Concurrency

 Asynchrony and interruptions (e.g., failures)

 Stringent quantitative constraints

• Time constraints

• Resource limitations

• Availability requirements

• Safety requirements

• The laws of physics

 RTE systems need to be engineered!

© Copyright Malina Software25

The Impact of Platforms on SW

 Example: The problem of out-of-date information

Monitoring

Station

Internet

Reactor

observer
on offoffon

State?

“on”

“on”

The software must operate correctly even if its
status information may be out of date!

© Copyright Malina Software26

Not Just a Question of Quantity/Performance

―It is not possible to guarantee that agreement can
be reached in finite time over an asynchronous
communication medium, if the medium is lossy or one
of the distributed sites can fail‖

 Fischer, M., N. Lynch, and M. Paterson, ―Impossibility of
Distributed Consensus with One Faulty Process‖ Journal of
the ACM, (32, 2) April 1985.

• In many real systems, the physical platform is a primary
design constraint

Computer system = software + hardware

• Yet, many practitioners still believe that ―platform concerns‖ are
second-order issues

© Copyright Malina Software27

Platform

Platfroms: The Raw Material of SW

 Platform:

the full complement of software and hardware required
for an application program to execute correctly

Software Application

Operating System

Hardware

NB: Software
engineering is very
weak on methods for
specifying platform
requirements of
software applications

Physical World

A platform also acts
as a gateway to the
physical world

© Copyright Malina Software28

Software Application 1

Platform

Software Application 2

Platforms as Service Providers

 The relationship between applications and
platforms can be represented as an instance of
the client-server pattern

 NB: Most platforms can support multiple
independent applications

Services are often shared by multiple
applications

dBase service CPU service Printer service

© Copyright Malina Software29

Quality of Service

 Quality of Service:

the degree of effectiveness in the provision of a service

 e.g. throughput, capacity, response time

 The two sides of QoS:

 offered QoS: the QoS that is available (supply side)

 required QoS: the QoS that is required (demand side)

© Copyright Malina Software30

QoS Analysis Example

 Key analysis question: Does a service (platform)
have the capacity to support its clients?

 i.e., does supply meet demand?

Offered

QoS

1 ms Platform

Client
(e.g., data base user)

readDB()

Key question:
(RequiredQoS  OfferedQoS) ?

Service
(e.g., data base)

readDB()

Resource Contract

Required

QoS

2 ms

© Copyright Malina Software31

The Platform Sharing Problem

1 ms Platform

Service
(e.g., data base)

readDB()

Client 1

Client 2

Client 3

2 ms

3 ms

2 ms

Multiple independent components (applications) can become
implicitly coupled if they share platform resources

© Copyright Malina Software32

MBE Languages for RT/E Systems

 SysML: The Systems Modeling Language

 A derivative (profile) of UML 2

 Allows reuse of UML 2 tools and expertise

 For high-level modeling of complete
(hardware/software/wetware) systems, their surrounding
contexts, and their requirements

 Can be used in conjunction with UML 2 for smoother transition
between system and software modeling

 UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE)

 For precise modeling RT/E systems and their platforms

 ...and, for analysis of RT/E system properties (schedulability,
performance)

 Also, numerous custom domain-specific modeling
languages

© Copyright Malina Software33

MARTE Capabilities

 An extensible collection of complementary domain-
specific modeling languages

 A language for modeling time

 A language for modeling component-based real-time
applications

 A language for modeling platforms

 A language for specifying the allocation of software to
platforms

 A language for defining QoS characteristics of software
applications and platforms and defining their values

 A model annotation language for analyzing system
performance

 A model annotation language for analyzing schedulability

© Copyright Malina Software34

MARTE Structure

Schedulability
Analysis Support

Performance
Analysis Support

System Analysis Support

HW Resource
Modeling
Concepts

SW Resource
Modeling
Concepts

Communications
and Concurrency

Concepts

RT/E Modeling Concepts

RT/E Model
Library

Time Concepts Resource Concepts
NFP (QoS)

Specification
Allocation
Modeling

Annotation (overlay)
sub-profiles DSL sub-profiles

© Copyright Malina Software35

Annotation Profiles

 A profile can be used as an overlay mechanism
that can be dynamically applied or ―unapplied‖ to
provide a desired view of an UML model

 Allows a UML model to be interpreted from the
perspective of the viewpoint definer

 NB: Applying or unapplying profiles has no effect
on the underlying model

user1

user2

DBase

unapply

profile
user1

user2

DBase

«client»

user1

«client»

user2

«server»

DBase

serviceRate = . . .

arrivalRate = . . .

arrivalRate = . . .

apply

profile

© Copyright Malina Software36

Automated Design Analyses with MARTE

 Analyze a design for desired or undesired properties

 …using inter-formalism transformations and formal methods

Modeling

Tool

5

3.1

4

Model Analysis

Tool

Automated
model transformation

m

Automated
inverse transformation

2.5

QoS annotations

© Copyright Malina Software37

The MARTE Model of Time

 Both discrete and continuous (dense) time models
are supported

 Time as a progression of instants

 Support for multiple concurrent time bases

 ...and relationships between their instants (coincident,
before, after)

 Timing mechanisms

 Clocks, timers

 Time-related phenomena

 Timed instances, timed events, durations, time constraints,
etc.

 Used extensively in other parts of the profile

© Copyright Malina Software38

Example: Timing Annotations

Sd DataAcquisition

:Controller :Sensor

acquire() { d1<=(1, ms) }

sendData (data) { [(0, ms)..(10, ms)] }

ack()

@t2

{ [d1..30*d1] }

&d1

constraint1= { (t0[i+1] - t0[i]) > (100, ms) }

constraint2= { (t3 when data<5.0) < t2+(30, ms) }

Extended

duration

intervals with

bound « [] »

specification

Instant Interval

Constraint

Constraint in an

observation with condition

expression

Duration expression

between two sucessive

occurrences

start() { jitter(t0)<(5, us) }

@t0

{]t1..t1+(8, ms)] }

Jitter constraint

@t3

@t1

Slide courtesy of Sebastien Gerard, CEA

© Copyright Malina Software39

Example Hardware Platform Model

«hwResource»

ProcessingNode

«hwResource»

ProcessingNode

«hwProcessor»

: CPU

«hwProcessor»

: CPU

«hwBus»

: Bus

«hwBus»

: Bus

«hwDMA»

: DMA

«hwDMA»

: DMA
«hwDrive»

: Disk[2]

«hwDrive»

: Disk[2]
«hwRAM»

: RAM

«hwRAM»

: RAM

{isSynchronous = true}

{mips = 5,

nbCores = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}
{nbChannels = 2}

{isSynchronous = true

isStatic = false}

© Copyright Malina Software40

Example: Modeling Deployment

 Specifying the allocation of application elements to
elements of the platform

«hwResource»

ProcessingNode

«hwProcessor»

: CPU

«hwBus»

: Bus

«hwDMA»

: DMA
«hwDrive»

: Disk[2]
«hwRAM»

: RAM

{isSynchronous = true}

{mips = 5,

nbCores = 2}

{memorySize = (300, GB),

timing[1] = (, averageAxTime, (5, ms)),

timing[2] = (, maximumAxTime, (50, ms)}

{nbChannels = 2}
{isSynchronous = true

isStatic = false}

«hwProcessor»

: CPU
{mips = 5,

nbCores = 2}

videoClient

: MyApp

videoServer

: VServer

«allocate» «allocate» «allocate»

© Copyright Malina Software41

Overview

 On Model-Based Software Engineering

 Applying MBSE to Real-Time/Embedded Systems

 The Principal Research Challenges of MBSE

© Copyright Malina Software42

The State of the MBSE Domain

 At present, most MBSE technological advances are
being made by industry

 Usually by smaller specialized enterprises trying to solve a
specific problem from the customer base

 Typically technology- or vendor-specific localized solutions

 What is missing is a comprehensive theoretical
underpinning for MBSE as a basis of a systematic,
comprehensive, and reliable engineering discipline

 A major set of research challenges

© Copyright Malina Software43

MBSE domain

Theory

(foundations)
Engineering

Definition Processes Tooling Human factors
Model

processing

LanguagesFrameworks

Patterns

SemanticsSyntax

Analysis Synthesis
Model

management

Dynamic Static

Code generation
Formalism

transforms

Transforms

Testing Simulation

A Map of the MBSE Research Space

© Copyright Malina Software44

Opportunity: Predictable Computer Languages

 New generation of computer languages based on
well-understood and stable formalisms

 E.g., state machines, Petri nets, controlled structural
dynamics

 Potential advantages:

 Simpler semantics

 More open to automated formal (mathematical) analyses
methods

 Greatly reduced likelihood of catastrophic errors

 Can span the full range from early architectural design
through implementation

© Copyright Malina Software45

Opportunity: Executable Models

 Ability to execute and observe highly abstract and
incomplete models

 To evaluate critical design choices as early as possible and
mitigate risk

 To gain confidence

 To validate requirements with stakeholders

NotStarted

Started

start

producer

NotStarted

Started

start

producer

NotStarted

Started

start

producer

NotStarted

Started

start

producer

Simulator

NotStarted

Started

start

producer

Design Model Executing Model

© Copyright Malina Software46

Conclusions

 Traditional software technologies are incapable of
adequately addressing the needs of today’s RTE
software

 Too much accidental complexity

 Insufficient automation

 Model-based software engineering methods have proven
that they can provide significant enhancements to
productivity and quality

 Higher degrees of automation and abstraction

 Use of domain-specific languages (MARTE) and tools (Papyrus)

 However, many research challenges still remain to be
resolved before it can claim to be a mature engineering
discipline

© Copyright Malina Software47

DANKE SCHÖN:
QUESTIONS,
COMMENTS,

ARGUMENTS...

© Copyright Malina Software48

Example:
The Recursive Control Pattern – A
Standard Architecture for MDD

of Real-Time Systems

© Copyright Malina Software49

Example System

 A multi-line packet switch that uses the
alternating-bit protocol as its link protocol

line card N
End user

line card 1

unreliable

transmission

medium

SWITCH

.

.

.

AB

protocolAB
sender

AB
receiver

End user

End user

AB
sender

AB
receiver

© Copyright Malina Software50

Alternating Bit Protocol (1)

 A simple one-way point-to-point packet protocol

packetizer unpackerReceiverSender

data(1)

ackA

pktA
data(1)

ack

ack

data(2)

ackB

pktB
data(2)

ack

ack

AB

protocol

…etc.

© Copyright Malina Software51

Alternating Bit Protocol (2)

 State machine specification

Sender SM

ackB/^ack
data/^pktA

ackA/^ack data/^pktB

timeout/^pktB

timeout/^pktA

AcceptPktA

WaitAckA

AcceptPktB

WaitAckB

pktA/^data

ack/^ackA

pktB/^data
ack/^ackB

timeout/^ackB

timeout/^ackA

RcvdPktA

WaitPktB

RcvdPktB

WaitPktA

Receiver SM

© Copyright Malina Software52

Additional Considerations

 Support infrastructure

SWITCH

AB
receiver

AB
sender

operator
interface

DB
interface

System

operator

DBase

AB lines
manager

© Copyright Malina Software53

Control

The set of (additional) mechanisms and
actions required to bring a system into the
desired operational state and to maintain it in
that state in the face of various planned and
unplanned disruptions

 For software systems this includes:
 system/component start-up and shut-down
 failure detection/reporting/recovery
 system administration, maintenance, and provisioning
 (on-line) software upgrade

© Copyright Malina Software54

Retrofitting Control Behavior

AcceptPktA

WaitAckA

AcceptPktB

WaitAckB

Failed

JustCreated
Hardware

Audit

GettingData

ReadyToGo

Analysing

Failure

© Copyright Malina Software55

The Control Automaton

 In isolation, the same control behavior appears
much simpler

Failed

JustCreated

Hardware

Audit

GettingData

ReadyToGo

Analysing

Failure

Operational

© Copyright Malina Software56

Control versus Function

 Control behavior is often treated in an ad hoc

manner, since it is not part of the primary system

functionality

 typically retrofitted into the framework optimized for the

functional behavior

 leads to controllability and stability problems

 However, in highly-dependable systems as much as

80% of the system code is dedicated to control

behavior!

© Copyright Malina Software57

Some Important Observations

 Control predicates function

 before a system can perform its primary function, it first

has to reach its operational state

 Control behavior is often independent of functional

behavior

 the process by which a system reaches its operational

state is often the same regardless of the specific

functionality of the component

© Copyright Malina Software58

Basic Design Principles

 Separate control from function

 separate control components from functional components

 separate control from functional interfaces

 imbed functional behavior within control behavior

 Centralize control (decision making)

 if possible, focus control in one component

 place control policies in the control components and control

mechanisms inside the controlled components

© Copyright Malina Software59

The Basic Structural Pattern

 Set of components that need to be controlled in a
coordinated fashion

Controlled

Component 1
. . . Controlled

Component N

Control

interface

Functional

(service)

interface

Central

Controller

© Copyright Malina Software60

Recursive Application

 Hierarchical control

 scales up to arbitrary number of levels

Central

Controller

Controlled

Component 1 . . .

Controlled

Component N

Central

Controller

. . .
Controlled

Component 1 . . .

Controlled

Component N

Central

Controller

© Copyright Malina Software61

Realization with Active Objects and Ports

 Composite plays role of centralized controller

CompSet

Failed

JustCreated

Hardware

Audit

GettingData

ReadyToGo

Analysing

Failure

Operationalc1:Comp1 cN:CompN

© Copyright Malina Software62

Exploiting Inheritance

 Abstract control classes can capture common control
behavior and structure

 Different subclasses capture function-specific
behavior

AbstractControllee

ports

controlPort: CtrlProtocol

Sender Receiver . . .

© Copyright Malina Software63

Exploiting Hierarchical States

Failed

JustCreated

Hardware

Audit

GettingData

ReadyToGo

Analysing

Failure

Operational

AbstractControllee

ports

controlPort: CtrlProtocol

Sender

